Compilation

Aide mémoire - langages formels

$$\begin{array}{l} L^0 = \{\varepsilon\} \quad \emptyset^0 = \{\varepsilon\} \\ L^* = \bigcup_{n \geq 0} L^n \quad \emptyset^* = \{\varepsilon\} \\ L^+ = \bigcup_{n > 0} L^n \quad \emptyset^+ = \emptyset \end{array}$$

$$L^* = L^+ \Leftrightarrow \varepsilon \in L$$

$$L^*L^* = L^* \text{ mais } L^+L^+ = L^2L^*$$

$$L = L^2 \Leftrightarrow (L = \emptyset \lor L = L^*)$$

$$(a^*b)^*a^* = a^*(ba^*)^* = (b^*a)^*b^* = b^*(ab^*)^* = \{a,b\}^*$$

1 Grammaires

opération	construction		
union	$S \to S_1 \mid S_2$		
concaténation	$S \to S_1 S_2$		
étoile de Kleene	$S \to S_1 S \mid \varepsilon$		

Normalisation Dans l'ordre : élimination des productions nulles ; élimination des chaînes $(A \to B \in P)$; élimination des symboles non féconds $(A \not\stackrel{*}{\Rightarrow} w, w \in \Sigma^*)$; élimination des symboles inaccessibles $(S \not\stackrel{*}{\Rightarrow} \alpha A \beta, \alpha, \beta \in (V \cup \Sigma)^*)$.

Forme normale de Chomsky Toutes les productions de la grammaire doivent être de la forme $A \to BC$, $A \to a$.

2 Expressions régulières

2.1 Automates finis

Complémentaire Intervertir états accepteurs et non-accepteurs, sur l'automate déterminisé. Le complémentaire d'un automate minimal est minimal.

Concaténation Connecter les états accepteurs du permier automate aux *successeurs* des états initiaux du second automate. Maintenir les états accepteurs du premier automate si l'un des états initiaux du second automate est accepteur.

Fermeture positive Connecter les états accepteurs aux *successeurs* des états initiaux.

Étoile de Kleene si ε appartient au langage décrit par l'automate, il s'agit de la construction précédente. Sinon, ajouter un nouvel état, à la fois initial et accepteur, déconnecté de l'automate.

Renversement Inverser les flèches de l'automate, et inverser les états initiaux avec les états accepteurs.

Minimisation On rappelle que la relation de non distinguabilité des états de l'automate (*i.e.* $p, q \in Q, \forall w \in \Sigma \ (pw \in F \Leftrightarrow qw \in F)$) est caractérisée récursivement par :

$$p \equiv_0 q \Leftrightarrow (p \in F \Leftrightarrow q \in F)$$

$$(k > 0) \quad p \equiv_k q \Leftrightarrow p \equiv_{k-1} q$$

$$\wedge \forall a \in \Sigma \ pa \equiv_{k-1} qa$$

2.2 Lemme de pompage

Si un langage L satisfait la condition suivante alors il n'est pas régulier : « Pour tout $N \geq 1$ il existe un mot $w \in L$ de longueur égale ou supérieure à N tel que pour toute factorisation w = xyz qui satisfait les conditions $|xy| \leq N, \, |y| \geq 1,$ il existe un entier $i \geq 0$ tel que $xy^iz \not\in L$ ».

2.3 Propriétés de fermeture

Le tableau suivant indique si oui ou non une opération préserve la classe de langage pour les langages hors contexte déterministes, hors contexte non-ambigus (!CFL), hors contexte et enfin contextuels. Noter que les langages réguliers sont fermés par toutes les opérations listées dans le tableau.

opération	DCFL	!CFL	CFL	$\neg \text{CFL}$
union	N	N	О	N
union disjointe	N	О	О	N
intersection	N	N	N	N
complémentaire	О	N	N	N
concaténation	N	N	О	N
étoile de Kleene	N	N	О	N
renversement	N	O	O	O