Discovering Properties about Arrays in Simple Programs

Nicolas Halbwachs and Mathias Péron

Grenoble - France

Considering Arrays in Static Analysis

A lot of work done
■ array bound checking but...

- array dependence/dataflow analysis for automatic parallelization

$$
\mathrm{i} \leftarrow \mathrm{~A}[\mathrm{j}] ;
$$

$$
\mathrm{A}[\mathrm{i}] \leftarrow \mathrm{x}
$$

for optimizations

A lot of work to be done

- array contents!
decision procedure
- synthesis of properties

$$
\begin{aligned}
& \text { for } i=2 \text { to } n \text { do } \\
& \qquad \begin{array}{l}
\mathrm{s} \leftarrow 0 ; \\
\text { for } j=1 \text { to } i-1 \text { do } \\
L \mathrm{~s} \leftarrow \mathrm{~s}+\mathrm{A}[\mathrm{j}] \\
\mathrm{A}[\mathrm{i}] \leftarrow \mathrm{s}
\end{array}
\end{aligned}
$$

- Which properties?

■ How many dimensions?

- Dynamic memory? pointers?

Considering Arrays in Static Analysis

A lot of work done

- array bound checking but...
- array dependence/dataflow analysis for automatic parallelization

$$
\mathrm{i} \leftarrow \mathrm{~A}[\mathrm{j}] ;
$$

$$
\mathrm{A}[\mathrm{i}] \leftarrow \mathrm{x}
$$

for optimizations

A lot of work to be done

- array contents!
decision procedure
- synthesis of properties
- Which properties?

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& L \mathrm{~S}[i] \leftarrow 0
\end{aligned}
$$

for $i=1$ to n do
$A[i] \leftarrow A[i]+S[i]$
for $j=i+1$ to n do
$\llcorner S[j] \leftarrow S[j]+A[i]$

- How many dimensions?
- Dynamic memory? pointers?

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{i} \leftarrow 1 ; \\
& \text { while } i \leq 100 \\
& \text { do } \\
& \qquad \mathrm{i} \leftarrow \mathrm{i}+1 ;
\end{aligned}
$$

Static Analysis thanks to Abstract Interpretation

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=(\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3 \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd		
R1	$i \in[-\infty,+\infty]$			
R2	\perp			
R3	\perp			
R4	\perp			

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=(\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3 \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd	3th	
R1	$i \in[-\infty,+\infty]$	$i \in[-\infty,+\infty]$		
R2	\perp	$i \in[1,1]$		
R3	\perp	$i \in[2,2]$		
R4	\perp	\perp		

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=(\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3 \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd	3th	
R1	$i \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	
R2	\perp	$i \in[1,1]$	$i \in[1,2]$	
R3	\perp	$i \in[2,2]$	$i \in[2,3]$	
R4	\perp	\perp	\perp	

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=(\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3 \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd	4th	
R1	$i \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	
R2	\perp	$i \in[1,1]$	$i \in[1,3]$	
R3	\perp	$i \in[2,2]$	$i \in[2,4]$	
R4	\perp	\perp	\perp	

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=(\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3 \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd	102th is FP	
R1	$i \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	
R2	\perp	$i \in[1,1]$	$i \in[1,101]$	
R3	\perp	$i \in[2,2]$	$i \in[2,101]$	
R4	\perp	\perp	$i \in[101,101]$	

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=\mathrm{R} 2 \nabla((\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3) \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd	3th	
R1	$i \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	
R2	\perp	$i \in[1,1]$	$i \in[1,2]$	
R3	\perp	$i \in[2,2]$		
R4	\perp	\perp		

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=\mathrm{R} 2 \nabla((\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3) \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd	3th is FP	
R1	$i \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	
R2	\perp	$i \in[1,1]$	$i \in[1,+\infty]$	
R3	\perp	$i \in[2,2]$	$i \in[2,101]$	
R4	\perp	\perp	$i \in[101,+\infty]$	

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=i \in[-\infty,+\infty] \\
& \mathrm{R} 2=\mathrm{R} 2 \nabla((\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3) \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq 100))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>100)
\end{aligned}
$$

	1st	2nd	3th is FP	desc. is FP
R1	$i \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$	$\mathrm{i} \in[-\infty,+\infty]$
R2	\perp	$i \in[1,1]$	$i \in[1,+\infty]$	$i \in[1,101]$
R3	\perp	$i \in[2,2]$	$i \in[2,101]$	$i \in[2,101]$
R4	\perp	\perp	$i \in[101,+\infty]$	$i \in[101,101]$

Static Analysis thanks to Abstract Interpretation

$$
\begin{aligned}
& \mathrm{R} 1=\mathrm{T} \\
& \mathrm{R} 2=\mathrm{R} 2 \nabla((\mathrm{R} 1[i \leftarrow 1]) \sqcup \mathrm{R} 3) \\
& \mathrm{R} 3=(\mathrm{R} 2 \sqcap(i \leq n))[i \leftarrow i+1] \\
& \mathrm{R} 4=\mathrm{R} 3 \sqcap(i>n)
\end{aligned}
$$

	1st	2nd	3th is FP	desc. is $F P$
R 1	\top	\top	\top	\top
R 2	\perp	$n \geq i=1$	$n \geq 1, i \geq 1$	$n \geq i-1, i \geq 1$
R 3	\perp	$n \geq i-1, n \geq 1, i=2$	$n \geq i-1 \geq 1$	$n \geq i-1 \geq 1$
R 4	\perp	\perp	$i>n \geq 1$	$i=n+1 \geq 2$

Array Summarization

$$
\begin{aligned}
& i \leftarrow 1 ; \\
& \text { while } i \leq 100 \text { do } \\
& {\left[\begin{array}{l}
A[i] \\
i \leftarrow \mathrm{i}[i+1] ;
\end{array}\right.}
\end{aligned}
$$

Array Summarization

Array Summarization

- Abstract each array A by a single variable a
- Interpretation
$\psi(a) \Leftrightarrow \forall \ell=1 . . n, \psi(A[\ell])$
- Assignment $A[i] \leftarrow \exp$ is weak assignment to variable a ($a \leftharpoonup$ exp). i.e. indeterministic choice between

$\mathrm{A}[\mathrm{i}] \leftarrow \mathrm{B}[\mathrm{i}+1]$ $a \leftarrow \exp$ and leave unchanged:
$\mathrm{R} 4=\mathrm{R} 3 \sqcup(\mathrm{R} 3[a \leftarrow b])$

Array Summarization

- Abstract each array A by a single variable a
- Interpretation
$\psi(a) \Leftrightarrow \forall \ell=1 . . n, \psi(A[\ell])$
- Assignment $A[i] \leftarrow \exp$ is weak assignment to variable a ($a \leftharpoonup$ exp).
i.e. indeterministic choice between

$a \leftarrow \exp$ and leave unchanged:
$\mathrm{R} 4=\mathrm{R} 3 \sqcup(\mathrm{R} 3[a \leftarrow b])$

Issues

- weak assignment can only lose information

■ information about the initial content of arrays must be obtained by other means

Array Summarization

- Abstract each array A by a single variable a
- Interpretation
$\psi(a) \Leftrightarrow \forall \ell=1 . . n, \psi(A[\ell])$
- Assignment $A[i] \leftarrow \exp$ is weak assignment to variable a ($a \leftharpoonup$ exp).
i.e. indeterministic choice between

$a \leftarrow \exp$ and leave unchanged:
$\mathrm{R} 4=\mathrm{R} 3 \sqcup(\mathrm{R} 3[a \leftarrow b])$

	1 st	
R1	$a=0,5 \leq b \leq 10$	
	$5 \leq b-a \leq 10$	
R2	\perp	
R3	\perp	
R4	\perp	
R5	\perp	

Array Summarization

- Abstract each array A by a single variable a
- Interpretation
$\psi(a) \Leftrightarrow \forall \ell=1 . . n, \psi(A[\ell])$
- Assignment $A[i] \leftarrow \exp$ is weak assignment to variable a ($a \leftharpoonup \exp$).
i.e. indeterministic choice between

$a \leftarrow \exp$ and leave unchanged:
$\mathrm{R} 4=\mathrm{R} 3 \sqcup(\mathrm{R} 3[a \leftarrow b])$

	1st	2nd
R1	$a=0,5 \leq b \leq 10$	$a=0,5 \leq b \leq 10$
	$5 \leq b-a \leq 10$	$5 \leq b-a \leq 10$
R2	\perp	$a=i-1=0,5 \leq b \leq 10$
		$5 \leq b-a \leq 10,4 \leq b-i \leq 9$
R3	\perp	idem
R4	\perp	
R5	\perp	

Array Summarization

- Abstract each array A by a single variable a
- Interpretation
$\psi(a) \Leftrightarrow \forall \ell=1 . . n, \psi(A[\ell])$
- Assignment $A[i] \leftarrow \exp$ is weak assignment to variable a ($a \leftharpoonup \exp$).
i.e. indeterministic choice between

$a \leftarrow \exp$ and leave unchanged:
$\mathrm{R} 4=\mathrm{R} 3 \sqcup(\mathrm{R} 3[a \leftarrow b])$

	1st	2nd
R1	$\begin{aligned} & a=0,5 \leq b \leq 10 \\ & 5 \leq b-a \leq 10 \end{aligned}$	$\begin{aligned} & a=0,5 \leq b \leq 10 \\ & 5 \leq b-a \leq 10 \end{aligned}$
R2	\perp	$\begin{aligned} & a=i-1=0,5 \leq b \leq 10 \\ & 5 \leq b-a \leq 10,4 \leq b-i \leq 9 \end{aligned}$
R3	\perp	idem
R4	\perp	$\begin{aligned} & i=1,5 \leq b \leq 10 \\ & 4 \leq b-i \leq 9 \end{aligned}$
R5	\perp	

Array Summarization

- Abstract each array A by a single variable a
- Interpretation
$\psi(a) \Leftrightarrow \forall \ell=1 . . n, \psi(A[\ell])$
- Assignment $A[i] \leftarrow \exp$ is weak assignment to variable a ($a \leftharpoonup \exp$).
i.e. indeterministic choice between

$a \leftarrow \exp$ and leave unchanged:
$\mathrm{R} 4=\mathrm{R} 3 \sqcup(\mathrm{R} 3[a \leftarrow b])$

	1st	2nd
R1	$a=0,5 \leq b \leq 10$	$a=0,5 \leq b \leq 10$
	$5 \leq b-a \leq 10$	$5 \leq b-a \leq 10$
R2	\perp	$a=i-1=0,5 \leq b \leq 10$
		$5 \leq b-a \leq 10,4 \leq b-i \leq 9$
R3	\perp	$i d e m$
R4	\perp	$4 \leq 1,5 \leq a=b \leq 10$
R5	\perp	

Array Summarization

- Abstract each array A by a single variable a
- Interpretation
$\psi(a) \Leftrightarrow \forall \ell=1 . . n, \psi(A[\ell])$
- Assignment $A[i] \leftarrow \exp$ is weak assignment to variable a ($a \leftharpoonup \exp$).
i.e. indeterministic choice between

$a \leftarrow \exp$ and leave unchanged:
$\mathrm{R} 4=\mathrm{R} 3 \sqcup(\mathrm{R} 3[a \leftarrow b])$

	1st	2nd
R1	$a=0,5 \leq b \leq 10$	$a=0,5 \leq b \leq 10$
	$5 \leq b-a \leq 10$	$5 \leq b-a \leq 10$
R2	\perp	$a=i-1=0,5 \leq b \leq 10$ R3$\perp \perp$
R4	\perp	$i d e m$
		$i=1,0 \leq a \leq 10,4 \leq b-i \leq 9$
R5	\perp	$0 \leq b-a \leq 10,4 \leq b-i \leq 9,-1 \leq a-i \leq 9$

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices

$$
A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]
$$

- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is

$$
a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}
$$

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices

$$
A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]
$$

- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow \exp$.
- Incrementation $i \leftarrow i+1$ is

$$
a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}
$$

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them
$\square a_{1}$

a_{1}	a_{2}	a_{3}

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow \exp$.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Symbolic Partitioning \& Summarization [Gopan, Reps, Sagiv - POPL'05]

- Partition each array into symbolic slices
$A_{1}=A[1 . . i-1], A_{2}=A[i], A_{3}=A[i+1 . . n]$
- Abstract slice A_{p} by a single variable a_{p}
- Interpretation

$$
\psi\left(a_{p}\right) \Leftrightarrow \forall \ell \in I_{p}, \psi(A[\ell])
$$

- Assignment $A[i] \leftarrow \exp$ is $a_{2} \leftarrow$ exp.
- Incrementation $i \leftarrow i+1$ is $a_{1} \leftharpoonup a_{2} ; a_{2} \leftarrow a_{3}$

- An abstract value is a set of configurations. A lattice element is associated to each of them

Conclusions

- able to discover unary properties about array elements
- unable to discover relations between array elements
- able to check (with PVLA) such relations, provided by the user. e.g. $\forall \ell=1 . . n, A[\ell]=B[\ell]$

This Work

- Generalization to discover relations with shifts $\forall \ell \in I, \psi\left(A 1\left[\ell+k_{1}\right], \ldots, A m\left[\ell+k_{m}\right]\right)$
- Clear element-wise relations: only between shifts of a same array slice (LUSTRE-V4)
$A[1 . . i]=A[i], A[i]=A[i-1], A[1 . . i-1]<A[2 . . i], A[1 . . i] \leq 5^{i}$
- Symbolic slices as formulas for better manipulation
- Lost information in weak assignement reduced
- Contents are not always numerics!

This Work Is on Simple Programs

- one-dimensional arrays
$■$ simple traversal: $i \leftarrow \exp ;$ while(cond) $\{\ldots ; i \leftarrow i \pm 1\}$
- simple array access: $A[i]:=\exp (B[i+k])$

$$
\begin{aligned}
& \text { for } i:=2 \text { to } n \text { do } \\
& x:=A[i] ; j:=i-1 \text {; } \\
& \text { while } j \geq 1 \text { and } A[j]>x \\
& \text { do } \\
& A[j+1]:=A[j] ; \\
& \text { _ } j:=j-1 \\
& A[j+1]:=x \\
& x:=A[1] ; i:=1 ; j:=n \text {; } \\
& \text { while } i \leq j \text { do } \\
& \text { if } A[i] \leq x \text { then } \\
& A \mid \bar{i}-1]:=A[i] \text {; } \\
& i:=i+1 \\
& \text { else } \\
& \text { while } j \geq i \text { and } \\
& A[j] \geq x \text { do } \\
& \text { L } j:=j-1 \\
& \text { if } j>i \text { then } \\
& A[i-1]:=A[j] ; \\
& A[j]:=A[i] \text {; } \\
& i:=i+1 \text {; } \\
& j:=j-1 \\
& A[i-1]:=x \text {; }
\end{aligned}
$$

Abstract Values

- We keep a formula $\left(\in L_{N}\right)$ over indices
- Symbolic slices are formulas $\left(\in L_{N}\right)$ over indices \mathcal{I} more a quantified symbol

$$
\begin{aligned}
& \mathcal{I} \cup\{\ell\} \\
& \varphi_{1}=(1 \leq \ell<i), \varphi_{2}=(1 \leq \ell=i) \\
& \varphi_{3}=(1 \leq i<\ell \leq n)
\end{aligned}
$$

- Attached to each slice p, a formula ψ_{p} $\left(\in L_{C}\right)$ over slice variables.
- Slice variable a^{z} in φ_{p} represents array slice $A[\ell+z], \varphi_{p}(\ell), x$ represents scalar

$A[i] \leftarrow A[i-1]+1$ expansion to array $x^{\left|\varphi_{p}\right|}$
- If $\varphi \Rightarrow \neg\left(\exists \ell \varphi_{p}\right), \psi_{p}$ is whatever. False! $\forall \ell, \ell \in \emptyset \Rightarrow$ False(ℓ)
- Interpretation, on $P, \Psi=\left(\varphi,\left(\psi_{p}\right)_{p \in P}\right)$ $\varphi(\mathcal{I}) \wedge$ $\forall p \in P, \forall \ell$,

$$
\varphi_{p}(\mathcal{I} \cup\{\ell\}) \Rightarrow \psi_{p}\left[A[\ell+z] / a_{p}^{z}\right]
$$

Abstract Values

- We keep a formula $\left(\in L_{N}\right)$ over indices
- Symbolic slices are formulas $\left(\in L_{N}\right)$ over indices \mathcal{I} more a quantified symbol

$$
\begin{aligned}
& \mathcal{I} \cup\{\ell\} \\
& \varphi_{1}=(1 \leq \ell<i), \varphi_{2}=(1 \leq \ell=i) \\
& \varphi_{3}=(1 \leq i<\ell \leq n)
\end{aligned}
$$

- Attached to each slice p, a formula ψ_{p} $\left(\in L_{C}\right)$ over slice variables.
- Slice variable a^{z} in φ_{p} represents array slice $A[\ell+z], \varphi_{p}(\ell), x$ represents scalar
 expansion to array $x^{\left|\varphi_{p}\right|}$
- If $\varphi \Rightarrow \neg\left(\exists \ell \varphi_{p}\right), \psi_{p}$ is whatever. False! $\forall \ell, \ell \in \emptyset \Rightarrow$ False (ℓ)

$$
A[i] \leftarrow A[i-1]+1
$$

$$
\begin{aligned}
& (i=n+1), \\
& \psi_{1}=\left(a_{1}^{0}=b_{1}^{0}\right), \psi_{2}=\psi_{3}=\perp_{C} \\
& \varphi_{1}=(\ell=1), \varphi_{2}=(2 \leq \ell<i)
\end{aligned}
$$

- Interpretation, on $P, \Psi=\left(\varphi,\left(\psi_{p}\right)_{p \in P}\right)$ $\varphi(\mathcal{I}) \wedge$

$$
\forall p \in P, \forall \ell
$$

$$
\varphi_{p}(\mathcal{I} \cup\{\ell\}) \Rightarrow \psi_{p}\left[A[\ell+z] / a_{p}^{z}\right]
$$

Example of analysis

Operators through the family $L(P)$

- a landmark: constant or index expression $i+k(k \in \mathbb{Z})$ such that $A[i+k]$ appears either as the left-hand side of an assignment or in the condition of a test.

$$
\begin{aligned}
& \varphi_{1}=(1=\ell<j<i) \\
& \varphi_{2}=(1=j=\ell<i) \\
& \varphi_{3}=(1=j+1=\ell<i) \\
& \varphi_{4}=(2 \leq \ell<j) \\
& \varphi_{5}=(2 \leq j=\ell<i) \\
& \varphi_{6}=(2 \leq j+1=\ell<i) \\
& \varphi_{7}=(2 \leq j+1<\ell<i) \\
& \varphi_{8}=(2 \leq \ell=j+1=i) \\
& \varphi_{9}=(2 \leq j+1<\ell=i) \\
& \varphi_{10}=(2 \leq j+1 \leq i<\ell)
\end{aligned}
$$

Operators through the family $L(P)$

- a landmark: constant or index expression $i+k(k \in \mathbb{Z})$ such that $A[i+k]$ appears either as the left-hand side of an assignment or in the condition of a test.

■ Partitioning : when you reach the scope of a landmark

- Merging (wrt an index, not a set of symbolic slices) : linked to the live status of the index

Operators into $L(P)$

■ normalization: consistency on shifts

- properties of a symbolic slice φ_{p}

Operators into $L(P)$

- index change

- content assignement (aliasing avoided!)

$$
\begin{array}{l|l|}
\left|\varphi_{1}\right| & \varphi_{2} \mid \varphi_{3} \\
\hline & \\
i & i+3 \\
\psi_{1}=(a=x) \\
\psi_{2}=(a>x) \\
\psi_{3}=\left(a>x, a^{-1}>x, a \geq a^{-1}\right) \\
\hline \text { content assignment } A[i+3]:=A[i] \\
\hline \psi_{1}=(a=x) \\
\psi_{2}=\left(a=a^{-3}\right) \\
\psi_{3}=\left(a>x, a^{-1} \geq x, a \geq a^{-1}\right)
\end{array}
$$

Contexts are Good for Non-Convex Analysis

Benchmarks and Future Work

	$\#$ vert. \times \# edg.	$\# \varphi_{p}$	$\#$ iter.	time (s)
array copy	4×4	3	5	2
seq. init.	4×4	4	5	4
max. search	5×6	4	5	4
insert. sort	9×11	$4-10$	8	105
find	8×11	20	6	315

- improve the implementation
- more general programs ("for" loops with steps, recursivity...)
- more general properties (non convex slices)

■ multi-dimensional arrays?

- generalization to function properties?
- properties about (multi-)sets of array values

