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Abstract. Knowing that two numerical variables always hold different
values, at some point of a program, can be very useful, especially for
analyzing aliases: if i 6= j, then A[i] and A[j] are not aliased, and this
knowledge is of great help for many other program analyses. Surprisingly,
disequalities are seldom considered in abstract interpretation, most of the
proposed numerical domains being restricted to convex sets. In this pa-
per, we propose to combine simple ordering properties with disequalities.
“Difference-bound matrices” (or DBMs) is a domain proposed by David
Dill, for expressing relations of the form “x − y ≤ c” or “c1 ≤ x ≤ c2”.
We define dDBMs (“disequalities DBMs”) as conjunctions of DBMs with
simple disequalities of the form “x 6= y” or “x 6= 0”. We give algorithms
on dDBMs, for deciding the emptiness, computing a normal form, and
performing the usual operations of an abstract domain. These algorithms
have the same complexity (O(n3), where n is the number of variables)
than those for classical DBMs, if the variables are considered to be valued
in a dense set (R or Q). In the arithmetic case, the emptiness decision is
NP-complete, and other operations run in O(n5).

Keywords: abstract domains, alias analysis, difference-bound matrices,
disequalities, static analysis

1 Introduction

In many situations, integer variables are used to address objects: it is the case
with array indexes, memory addresses and pointers in languages like C, and —
this last case being the initial motivation of this work — with the addressing of
devices (memories, processors, sensors,. . . ) in systems-on-chips.

It is well-known that this kind of addressing mechanism raises aliasing phe-
nomena: these aliasing problems are error-prone, can make the programs ob-
scure, and tremendously complicate their analysis: if i = j, then A[i] and A[j]
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are aliased, meaning that any change to A[i] implicitly changes A[j]. Knowing
that i = j allows this fact to be precisely captured; knowing that i 6= j allows to
keep A[j] unaffected by the changes to A[i]; ignoring whether i = j or not forces
any change to A[i] or A[j] to potentially affect (i.e., lose information about)
the other. So, determining whether two addresses may or must be equal is an
important goal.

Most abstract domains classically used to analyze the behavior of numerical
variables (like affine equations [Kar76], intervals [CC76], octagons [Min01], oc-
tahedra [CC04], polyhedra [CH78]), take equalities into account, but cannot be
used for determining disequalities, because they are convex . On the other hand,
equality and disequality relations, considered alone, are too poor to permit an in-
teresting analysis: the only new relations that one can deduce from a set of equal-
ities/disequalities come from the transitivity of ’=’ ((x = y ∧ y = z) ⇒ x = z)
and the obvious rule (x = y ∧ x 6= z) ⇒ y 6= z. This is why it is interesting to
combine this kind of relations with other properties, which enrich the deduction
power: in this paper, we intend to combine equalities/disequalities with ordering
relations. For instance the obvious rule (x ≤ y ≤ z ∧ x 6= y)⇒ x 6= z may allow
non completely trivial deductions.

Our goal is to extend an existing domain with disequalities, without increas-
ing the complexity of the representation and operations. In this paper, we study
such an extension of the domain of difference-bound matrices [Dil89,ACD93],
used for expressing relations of the form (c1 ≤ x ≤ c2) and (c1 ≤ x − y ≤ c2).
The simplest kind of disequalities that we can add to these inequalities, are
of the form (x − y 6= 0). It is enough for our initial goal, and, coupled with
difference-bound matrices, they allow strict inequalities to be expressed. Now,
if we consider also disequalities of the form (x− y 6= c), we get systems of con-
straints of arbitrary size (e.g., x − y 6= 0 ∧ x − y 6= 2 ∧ x − y 6= 4 . . .) which
contradicts our goal of not increasing the complexity. So, we will limit ourselves
to inequalities of the form (x− y 6= 0) or (x 6= 0).

The content of the paper is the following: Section 2 is a rapid review of the
related works. In Section 3, we recall the definition of difference-bound matrices
and the main algorithms used for their manipulation, in particular the use of
potential graphs. In Section 4 we define “disequalities DBMs” (or dDBMs),
which are a simple extension of DBMs with simple disequality relations of the
form (x 6= y). The notion of potential graph is extended into “disequal potential
graph”. Section 5 is devoted to the central problem of deciding emptiness of
the domain of solutions of a dDBM, and of normalizing dDBMs. Two cases
are distinguished, according to whether the solutions are searched in a dense
numerical set (like R or Q) or in the set of integers. In the dense case, we exhibit
algorithms for emptiness check and normal form computation, with the same
theoretical complexity as in the case of classical DBMs. In the arithmetic case,
unfortunately, the emptiness problem is NP-complete, and the complexity of the
computation of a normal form increases from n3 to n5 (n being the number of
variables). However, notice that the dense domain is a correct approximation of



the discrete one. Section 6 describes other classical operators on dDBMs, and
Section 7 gives some simple examples of application to program analysis.

2 Related Works

Several structures for representing finite unions of convex sets have been pro-
posed in the model-checking community. In particular, “difference decision dia-
grams” [MLAH99] and “clock difference diagrams” [LPWY99] are more general
than the domain we consider, but with an exponential complexity.

Another way of dealing with finite unions of convex set is by using “dy-
namic partitioning” in abstract interpretation [Bou93,JHR99,MR05,SISG06].
This could be used, for our problem, by separating the cases i < j and i > j.
However, here also, this can involve an exponential partitioning.

Of course, some non convex abstract domains have also been proposed, like
congruences [Gra91,Mas93], but their expressiveness is not comparable to our
present proposal. The weakly relational domains proposed by [Min02] are a fam-
ily of numerical domains, not necessarily convex, based on representation and
algorithmic similar to those of DBMs. However, strict conditions on expressible
constraints do not allow disequations.

In constraint logic programming, algorithms were proposed to deal with con-
straints on finite domains. Constraints propagation is expensive, in particular
because of representation problems [HS03]. [HS97] considers a restricted class
of constraints (±x± y ≤ c), corresponding to octagons [Min01], for which they
propose a polynomial solver. Disequalities are not considered, because of the
NP-completeness of the satisfiability problem. However, [Pug98] notices that, if
all variables are pairwise different, the satisfiability can be checked in O(n log n).

In dependence analysis (which concerns alias analysis among array elements),
many approaches are based on the resolution of linear constraints (e.g., [PW98]
use the Omega library). Among these works, [SW02] addresses constraints of the
form (±x ± y ≤ c) and disequalities. However, they use algorithmic devoted to
more general constraints (Omega Test), and they don’t have the same concerns,
since they don’t need to compute a normal form.

About normal forms of systems of linear inequalities and disequalities, we will
use Lassez’s works [LM92]. Imbert [Imb93] addresses the problem of eliminating
variables from such systems. All these results are too general with respect to the
constraints we consider, and only apply when solutions belong to dense sets.

3 Difference-Bound Matrices [Dil89]

Difference-Bound Matrices (DBMs) are a practical representation of potential
constraints (x− y ≤ c) introduced by D. Dill [Dil89].

Let Var = {v1, ..., vn−1} be a finite set of variables, V (= Z, Q or R) be the
numerical set in which variables and constants take their values, and V be the
extension of V with +∞, ordered as usual. Let C be a set of potential constraints



(vi − vj ≤ c) where c ∈ V and vi, vj ∈Var. The DBM representing C is a n× n
matrix M defined by (cf. Figure 2(a)):

Mij = inf{c | (vj − vi ≤ c) ∈ C}

where inf(∅) = +∞. In other words, if there is some constraint vj − vi ≤ c in C,
then Mij equals (the tightest) c, otherwise it is +∞.

A special variable v0 ∈ Var, always valued to zero is used to express bounds
on variables: (vi ≤ c) is written (vi − v0 ≤ c). The set of all possible valuations
of the variables represented by a DBM M will be called its domain, and will be
noted D(M).

Potential Graph. DBMs enjoy a useful graphical representation, called potential
graphs, interpreting a DBM M as the adjacency matrix of a weighted directed
graph (Figure 2(b)). In the potential graph, the variable v0 corresponds to the
node labelled by 0.

Emptiness Test and Closure. Using the potential graph representation, we un-
derstand that unfeasible sets of constrains are only those which form a circuit
with a strictly negative weight in the graph. As a consequence, in order to test
whether the domain of a DBM is empty, we simply have to check for the exis-
tence of such a circuit: this could be achieved in polynomial time (O(n3), e.g.,
with Bellman-Ford algorithm).

Because any potential graph including a strictly negative cycle is one possible
representation of an empty domain, we are interested in finding a normal form
for non-empty DBMs. Then, the shortest-path closure of their potential graph
is well-defined and can be computed by the Floyd-Warshall algorithm that runs
in O(n3) time (Figure 1).

for i← 0 to n− 1 do
Mii ← 0

for k ← 0 to n− 1 do
for i← 0 to n− 1 do

for j ← 0 to n− 1 do
Mij ← min(Mij , Mik + Mkj) ;

Fig. 1. The Floyd Warshall algorithm [CLRS90] computes the shortest-path closure
of a weighted digraph represented by a matrix M

Through the potential graph, the algorithm computes, for each pair of vari-
ables, the implicit constraints obtained by summation over paths of the graph,
and uses the tightest one for replacement. The resulting graph represents a DBM
with the same domain as the initial one, and minimal bounds for representing
this domain: it is indeed a normal form. Figure 2 is an illustration of the execu-
tion of the closure algorithm of DBMs.
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Fig. 2. Application of the closure algorithm on the DBM (a): (b) its potential graph
where dashed edges are the implicit constraints computed (null-loops on each variable
have been omitted) and (c) the resulting closed DBM

Notice that, after applying the shortest-path closure, testing for strictly neg-
ative cycles can be reduced to check if there is a variable i such that M≤

ii < 0,
an emptiness test running in linear time.

Classical DBMs can be ordered according to the pointwise extension of the ≤
order on V: M E M ′ ⇐⇒ ∀i, j Mij ≤M ′

ij . This order has the nice property to
imply inclusion on domains: M EM ′ ⇒ D(M) ⊆ D(M ′). Moreover, the normal
form M of a non-empty DBM M is the minimal DBM, with respect to E, with
the same domain as M : M = infE {M ′ | D(M ′) = D(M)}.

4 Extending DBMs

Let C be a set of constraints obeying the following grammar, where c ∈ V and
vi, vj ∈Var.

constraint ::= vi ≤ c | vi − vj ≤ c | vi 6= 0 | vi − vj 6= 0

We propose to represent C by means of a pair of matrices (M≤,M 6=) , called
a dDBM (for disequalities DBM): A dDBM is made of a classical DBM M≤ with
values in V, together with a symmetric boolean matrix M 6= where M 6=

ij = true
iff (vi 6= vj) ∈ C. We use the special variable v0 ∈ Var in order to represent also
non-nullity constraints (vi 6= 0).

Representing disequality constraints by a matrix may seem costly in space,
M 6= being a symmetric matrix and mostly sparse. However this representation
has a trivial map with M≤ allowing easier reasoning later.

Domain and Order. All the possible valuations of the variables of a dDBM M
will be called its domain, denoted by D(M). Its definition is straightforward:

D(M) = {(s1, ..., sn−1) ∈ Vn−1 | ∃s0 such that ∀i, j ∈ [0..n− 1]
sj − si ≤M≤

ij ∧ M 6=
ij ⇒ sj − si 6= 0 ∧ s0 = 0}



Similarly to DBMs, dDBMs can be provided with an order E:

M E M ′ ⇐⇒ ∀i, j M≤
ij ≤M ′≤

ij ∧ M ′ 6=
ij ⇒M 6=

ij

which enjoys the same connection with domain inclusion: M E M ′ ⇒
D(M) ⊆ D(M ′). Of course, as for DBMs, the converse implication is not true,
because of possible redundant constraints.

Disequal Potential Graph. The disequal potential graph of a dDBM (M≤,M 6=) is
obtained by juxtaposing to the potential graph of M≤, the non-directed graph
obtained by interpreting M 6= as an adjacency matrix (Figure 3). This mixed
graph G(M) = (Var ,E≤,E 6=, w) is defined by:

E≤ ⊆ Var ×Var E 6= ⊆ Var ×Var
E≤ = {(vi, vj) |M≤

ij < +∞} E 6= = {(vi, vj) |M 6=
ij }

w ∈ E≤ → V ∀e = (vi, vj) ∈ E≤ w(e) = M≤
ij
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Fig. 3. (a) A set of constraints, (b) its associated dDBM and (c) its disequal potential
graph

5 Emptiness Test and Normal Form

As for DBMs, we need to define a normal form, which will work for non-empty
dDBMs, in order to decide equivalence of domains by a simple syntactic check,
and to easily get all the consequences of given set of constraints. In this sec-
tion, we provide closure algorithms to compute the normal form of a dDBM,
separating the dense case (V = Q or R) and the arithmetic case (V = Z).

By analogy with classical DBMs, we define the normal form M of a dDBM
M by:

M = infE {M ′ | D(M) = D(M ′)}
In the arithmetic case, such normalization will narrow some bounds for arith-

metic reasons: for instance the set of constraints {x 6= 0, x ≤ 0} must be replaced
by {x 6= 0, x ≤ −1}. Unfortunately, this is not the only difficulties brought by
arithmetic: the emptiness test problem will be in the NP-complete class [RH80].



5.1 The Dense Case

Testing Emptiness. dDBMs are extensions of DBMs by disequality constraints.
Of course, the domain of a dDBM (M≤,M 6=) can be empty because of the
emptiness of the domain of M≤ (which we know how to check), but it can also
be empty because of the disequalities.

In the case where variables take values in a dense set, the following result due
to Lassez and McAloon [LM92] solves the problem, thanks to the independence
of disequalities. The constraints concerned by the theorem are more general than
ours, but in our special case, the result is the following:

Theorem 1 (independence of disequalities (Lassez et al., 1992)). Let I be
a system of linear inequalities, and D be a finite set of linear disequalities. Then
the conjunction of I and D is feasible if and only if, for each single disequality
d ∈ D, the conjunction of I and {d} is feasible.

In other words, for a dDBM (M≤,M 6=), if no single disequality eliminates
all the solutions of M≤, there is no way for a finite number of disequalities
constraints to make together the system unsatisfiable.

As a consequence, in dDBMs, the only way for a disequality constraint to
make the system unsatisfiable is to contradict an equality between the corre-
sponding variables. Thus the emptiness test boils down to check, for each dis-
equality constraint between variables, that these variables are not forced equal
by the DBM component of the dDBM (Figure 4).

empty ← false ;
for i← 0 to n− 2 as long as ¬empty do

for j ← i + 1 to n− 1 as long as ¬empty do

if M 6=
ij then

empty ←M≤
ij = 0 ∧M≤

ji = 0

Fig. 4. The algorithm testing dDBM emptiness in the dense case. Runs in O(n2) time

This test is correct when M≤ is in normal form: all equalities must have been
expressed to perform this syntactic check.

Normal Form and Closure Algorithm. In order to compute the normal form
of a dDBM (M≤,M 6=), we can first apply the closure of DBMs to M≤. This
makes sense because, in the dense case, disequality constraints will not involve
any narrowing of the bounds in M≤.

Now, M 6= must be completed with all the disequalities resulting from the
conjunction of M≤ and M 6=. These inequalities are deduced according to 3 rules:

1. vi − vj ≤ c, c < 0 ⇒ vi 6= vj

2. vi = vj ∧ vj 6= vk ⇒ vi 6= vk

3. vi ≤ vj ≤ vk ∧ vj 6= vk ⇒ vi 6= vk



Rules (1) and (2) can easily be applied, in O(n3), using the disequal potential
graph: rule (1) says that any arc with negative weight must be doubled by a
disequality edge, rule (2) says that two equal variables are concerned with the
same disequalities. The following algorithm (Figure 5) takes these rules into
account (M 6=

i∗ and M 6=
∗j respectively denote the ith row and the jth column of

M 6=):

for i← 0 to n− 2 do
for j ← i + 1 to n− 1 do

if M≤
ij < 0 ∨M≤

ji < 0 then

M 6=
ij ←true ; M 6=

ji ←true

if M≤
ij = 0 ∧M≤

ji = 0 then

v ←M 6=
i∗ ∨M 6=

j∗ ;

M 6=
i∗ ← v ; M 6=

∗i ← v ; M 6=
j∗ ← v ; M 6=

∗j ← v

Fig. 5. Algorithm applying rules (1) and (2) for deducing disequality constraints. Runs
in O(n3) time

Concerning rule (3), let’s first notice that this rule only concerns inequalities
of the form x ≤ y, that it, zero-weighted arcs in the disequal potential graph.
Thus, the propagation of rule (3) can be done on a restriction of the disequal
potential graph to zero-weighted arcs, and where nodes corresponding to equal
variables are merged: let us note G• = (V •, A•, E•) this reduced graph, where
(V •, A•) is the directed acyclic graph of zero-weighted arcs, and (V •, E•) is the
non-directed graph of disequalities. Let n• be its number of nodes. Now, taking
rule (3) into account boils down to propagating an irreflexive and symmetric re-
lation along an order relation. This propagation can be written on G• as follows:

(v1, v2) ∈ A•, (v2, v3) ∈ A•

(v1, v2) ∈ E• ∨ (v2, v3) ∈ E•

}
=⇒ (v1, v3) ∈ E•

and is a kind of transitive closure. Among the numerous algorithms for transitive
closure, Koubeck’s algorithm [GK79] is particularly interesting, since its worst-
case complexity is O((n•)2n•r) (where n•r is the number of arcs of the transitive
reduction of the graph) and its average complexity is O((n•)2 log n•) [Sim88]. A
more recent paper evaluate it to O((n•)2) [SCC93].

Figure 6(a) shows an example of mixed graph, and Figure 7 gives our version
of Koubeck’s algorithm, adapted to solve our closure problem. The only change
is that the result Φ(v) of the algorithm is no longer the set of nodes reachable
from v, but its partitioning into 2 sets: the set Φ1(v) of nodes which are reachable
from v by some path traversing an arc doubled by a disequality edge, and the set
Φ2(v) of other reachable nodes. The application of the algorithm is illustrated in
Figure 6(b). Notice the importance of considering successors of v in increasing
topological order: if, when dealing with node 0, we start with node 3 instead of
node 1, node 3 and 4 would finally belong to both Φ1(0) and Φ2(0).
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Fig. 6. (a) A mixed graph G• = (V •, A•, E•), labelled in topological order, and (b)
the edges to propagate with respect to the order described by arcs, for each node v in
Φ1(v)

for each v ∈ V • in decreasing topological order do
Φ(v)← (∅, {v}) ;
for each successor w of v in increasing topological order do

if w 6∈ Φ(v) then

if (M•)6=vw then
Φ1(v)← Φ1(v) ∪ Φ1(w) ∪ Φ2(w)

else
Φ1(v)← Φ1(v) ∪ Φ1(w) ; Φ2(v)← Φ2(v) ∪ Φ2(w)

Fig. 7. Algorithm computing the propagation of disequality constraints, derived from
Koubeck’s transitive closure algorithm. Worst-case complexity is O((n•)3) time and
expected complexity is O((n•)2 log n•) time [Sim88]

Finally, the new disequalities resulting from rule (3) are all the pairs (v, w)
with w ∈ Φ1(v) and must be symmetrically reported in the initial dDBM. Notice
that these new disequalities are not subject to rule (1) and take into account
rule (2). The phases of complete algorithm for computing the normal form of a
dDBM are given in Figure 8.

5.2 The Arithmetic Case

Testing Emptiness. Checking constraints satisfiability in Zn is classically more
difficult than in dense sets. Arithmetic satisfiability of DBMs and octagons is
polynomial, but it is no longer the case when combined with disequalities. The
dDBM of Figure 3 illustrates the problem: it has solutions in R3 or Q3, but not
in Z3, since we can’t find three distinct integers between 1 and 2. The complexity
of the emptiness problem in arithmetic was studied by [RH80], who showed its
NP-completeness by a reduction of the 3-coloration of graphs problem.



Apply the shortest-path closure on M≤ (Figure 1) ;1

Add implicit disequality constraints (rules (1) and (2)) to M 6= (Figure 5) ;2

Consider G the disequal potential graph of M where the set of arcs is3

restricted to those with null weight ;
Compute SCC, the set of strongly connected components of the directed4

graph of G ;
Consider G• the mixed reduced graph of G constructed on SCC ;5

Compute O, a topological order on the directed acyclic graph of G• ;6

Apply the disequality propagation algorithm (rule (3)) on G• with respect7

to O (Figure 7) ;
Add induced disequality constraints into M 6=

8

Fig. 8. Abstract algorithm of the closure of a dDBM M in the dense case. Runs in
O(n3) time

A brute force technique consists in considering separately, for each disequality
x− y 6= 0, the cases x− y ≤ −1 and x− y ≥ 1. This leads, for d disequalities, to
2d problems of emptiness for classical DBMs.

[SW02] suggests an improvement, allowing to decrease the number d of con-
sidered disequalities: they define an “inert” disequality, as a disequality which
either eliminates alone all solutions of the system of inequalities or cannot par-
ticipate in the absence of such solutions. Lassez theorem states that, in the
dense case, all disequalities are inert. For our restricted disequalities, some inert
disequalities can be easily detected in the arithmetic case: if some variable vi

involved in a disequality is not bounded by the system of inequalities (which can
be checked in constant time, by checking if either M

≤
i0 or M

≤
0i is +∞), then the

disequality is inert: either it contradicts an equation, or it can be discarded in
the emptiness check.

Normal Form. The key novelty, in the arithmetic case, is that disequalities may
involve a narrowing of the bounds in inequalities: (x − y ≤ 0 ∧ x 6= y) ⇒
(x− y ≤ −1). Since narrowed inequalities may in turn involve new narrowings,
making explicit all the consequences of a dDBM is clearly an iterative process.
Figure 9 shows an example of such an iterative computation: each rewriting
consists of a narrowing followed by an update of weights by Floyd-Warshall; the
first rewriting corresponds to the narrowing (y−x ≤ 0 ∧ x 6= y)⇒ (y−x ≤ −1),
which involves an update of z − x ≤ 1 into z − x ≤ 0; this new inequality is
narrowed in turn into z − x ≤ −1, which involves an update of y − x ≤ −1 into
y − x ≤ −2 (2nd rewriting).
A brute force algorithm, shown in Figure 10 performs the computation in O(n5).
In this algorithm, Dense-Closure stands for the computation of the normal form
in the dense case, or, more efficiently, only steps 1 (Floyd-Warshall on inequality
matrix) and 2 (propagation of rules (1) and (2)) of the algorithm of Figure 8. As
a matter of fact, in the arithmetic case, rule (3) is taken into account by iterative
applications of narrowing of inequalities and application of Floyd-Warshall.
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repeat
M ← Dense-Closure(M) ;
to narrow ← {(i, j) |M≤

ij = 0 ∧M 6=
ij} ;

forall (i, j) ∈ to narrow do

M≤
ij ← −1

until to narrow = ∅ ;

Fig. 10. Closure algorithm of a dDBM M in the arithmetic case. Runs in O(n5) time

Nevertheless, this algorithm can be improved by performing weight changes
from 0 to −1 on the fly, during the application of Floyd-Warshall.

Remark. The opposite disequal potential graph is
the closure of the one of Figure 3(c). Although it
does not contain any negative cycle, it represents
an empty domain in arithmetic. It shows that
testing the emptiness of the domain described by
a dDBM defined in Z is harder than computing
its normal form.
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6 Operators on dDBMs

6.1 The Lattice of dDBMs

We note M the set of dDBMs, with a least element ⊥ added (representing the
empty set, D(⊥) = ∅).M is partially ordered as follows:

M vM ′ ⇔
{

either M = ⊥
or M,M ′ 6= ⊥, M E M ′

The greatest dDBM, denoted > is such that, ∀i, j = 0 . . . n−1, >≤ij = if i =
j then 0 else +∞, and >6=ij = false.



Lattice Operators. Let M,M ′ be two dDBMs in normal form. Let us note:

M̌ =

[
M̌≤

ij = max(M≤
ij ,M ′≤

ij)
M̌ 6=

ij = M 6=
ij ∨M ′ 6=

ij

]
, M̂ =

[
M̂≤

ij = min(M≤
ij ,M ′≤

ij)
M̂ 6=

ij = M 6=
ij ∧M ′ 6=

ij

]

Then the least upper bound M tM ′ and the greatest lower bound M uM ′ are
defined by:

M tM ′ =


M if M ′=⊥
M ′ if M =⊥
M̌ otherwise

, M uM ′ =
{
⊥ if M =⊥ or M ′=⊥ or D(M̂)=∅
M̂ otherwise

6.2 Other Operators

Existential quantification and projection. Both operations consist in losing all
information, in a dDBM M , about a variable x, while keeping the remaining
information about other variables. In the quantification ∃x, M , the variable x is
eliminated, while in the projection M ↓x, x is left as a non-constrained variable.
Both operations need first a normalization of M , to gather all the consequences
on other variables, then ∃x,M is obtained by suppressing in M

≤
and M

6=
all

the rows and columns corresponding to x, while for M ↓x, the rows and columns
corresponding to x in M

≤
(resp., in M

6=
) must be filled with ’+∞’ (resp., with

’false’).

Post-condition of an assignment. As usual, the abstract post-condition of an
assignment x← e can be computed using existential quantification (z is a fresh
variable) and projection:

[x← e](M) = ∃z ((M ∧ (z = e))↓x ∧ (x = z))

It will be precise when the expression e is of the form y + c or c; otherwise,
the term (z = e) cannot be expressed in a dDBM, and all information about
x is lost, unless some ad-hoc treatment is applied: for instance, if M includes
the constraints (x = y), (w 6= 0) then the precision of [x ← x + w](M) can be
improved with (y 6= x).

Conditions. In order to propagate dDBMs over conditional statements, we must
define the abstraction of conditions. Obviously, only conditions expressible in
dDBMs can be precisely taken into account, i.e., conjunctions of conditions of
the form x − y ≤ c, ±x ≤ c, x 6= y, x 6= 0. The lattice operator t can be used
to approximate disjunctions of such conditions. Ad-hoc interpretations can be
defined for some other kinds of conditions, but otherwise the abstraction will
be >.



Widening operator. The lattice of classical DBMs being of infinite depth, so is
the lattice of dDBMs; so we must define a widening operator. However, there is
no infinite chain of disequality matrices.

Consider M,M ′ ∈ M, with M v M ′ and M ′ in normal form (this always
improves the precision of the operator). The widening M∇M ′ will remove, as
usual, the inequalities of M which are not satisfied in M ′, but all the disequalities
in M ′ can be kept in the result. In fact, our exact definition depends of V: of
course, we want to specialize the bounds 0 and −1 in the arithmetic case in order
to preserve the constraint (x ≤ y) when we widen (x < y) by this constraint.
When V = Z, without this specialization, the inequality (x − y ≤ 0) would get
lost in (x− y ≤ −1, x− y 6= 0) ∇ (x− y ≤ 0).

As usual, M∇M ′ is M ′, if M = ⊥. Otherwise, M∇M ′ = (M∇≤,M ′6=),
where ∀i, j = 0 . . . n−1,

M∇≤
ij =


M≤

ij if M ′≤
ij ≤M≤

ij

M ′≤
ij if M≤

ij = −1,M ′≤
ij = 0 and V = Z

+∞ otherwise

7 Application to Program Analysis

A prototype analyzer has been implemented, using the general fixpoint compu-
tation engine developed by Bertrand Jeannet for NBAC [Jea].

Figure 11 gives the results of the analysis of a very simple, ad-hoc program.
The goal was to show that (x 6= y) at point (3).

(1) read(x) ; read(y) ;
if (x = y) then (2) OK
else

while true do
(3) if (x = y) then ERR ;
read(z) ;
(4) if (x <= y) then

(5) if (y <= z) then y ← z; (6)

else
(7) if (x <= z) then x← z; (8)

Results

(1) >
(2) x = y

(3) x 6= y

(4) x 6= y

(5) x < y

(6) y = z, x < y, x < z

(7) x > y

(8) x = z, x > y, z > y

ERR ⊥

Fig. 11. Example of a toy program and the obtained results

Other simple programs have been successfully analyzed, e.g.: a circular buffer,
where we show that, when the buffer is neither full nor empty, the indexes of
the first and last elements are always different; the bakery algorithm, which is
proved, by means of invariants of the form pi 6= 0, to properly synchronize two
processes p1 and p2.



Beyond these simple examples, our abstract domain of dDBMs can be used
in other kinds of analyzes: for instance, in Deutsch’s pointer analysis [Deu94],
dDBMs could be used instead of other classical abstract domains, to represent
the possible aliases between two linked lists.

8 Conclusion

We have proposed a new numerical domain dealing with both potential con-
straints and disequalities between variables. The complexity is O(n3) when vari-
ables take their values in a dense set. In the arithmetic case, apart from the
emptiness problem which is well-known to be exponential, other operations are
in O(n5).

Our very rough prototype did not allow large examples to be dealt with, so
our next task will be to integrate the new domain in an existing analyzer, in
particular to check its effectiveness for alias analysis.

Another short-term perspective is to extend this work to octagons [Min01],
where disequalities of the form (x 6= −y) could also be expressed. Moreover, in
this paper, we wanted, as far as possible, not to increase the complexity of the
DBM domain, but if this constraint is released, we could consider more general
disequalities.
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