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Introduction DBMs dDBMs Dense Case Arithmetic Case Application to Program Analysis

Motivations for disequalities

Conviction
integer variables are used to address objects in many situations
I usefulness of the invariant x 6= y

alias phenomena: A[x ] and A[y ]

other client analsis, optimization, independence analysis

Framework static verification, abstract interpretation theory

allows conservative verification, computing an
over-approximation of the fixpoint

notion of abstract domain
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Abstract Interpretation (1/2)

I Theory of Program’s Dynamical Behavior Approximation

Problems complex values manipulation, iterative resolution of the
fixpoint equation

abstraction

concrete domain

abstract domain

γ

F

α
F#

conservative verification

convergence
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Abstract Interpretation (1/2)

I Theory of Program’s Dynamical Behavior Approximation

Problems complex values manipulation, iterative resolution of the
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Abstract Interpretation (1/2)

I Theory of Program’s Dynamical Behavior Approximation

Problems complex values manipulation, iterative resolution of the
fixpoint equation

abstraction

conservative verification

convergence

abstract domain

concrete domain

widening

⊥

γ v

γ
γ

vv

⊥ α

gfp(G )

fp(G )

lfp(G )
lfp(F )
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Abstract Interpretation (2/2)

I Classicals numerical abstract domains

Abstraction of a set of states:

x2

x1
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Abstract Interpretation (2/2)

I Classicals numerical abstract domains

Abstraction of a set of states: non-relational domains

x2

x1

signs 0 ≤ xi
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Abstract Interpretation (2/2)

I Classicals numerical abstract domains

Abstraction of a set of states: non-relational domains

x2

x1

signs
intervals lb ≤ xi ≤ ub
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Abstract Interpretation (2/2)

I Classicals numerical abstract domains

Abstraction of a set of states: 2-relational domains

x2

x1

signs
intervals
zones (DBMs) xi − xj ≤ c
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Abstract Interpretation (2/2)

I Classicals numerical abstract domains

Abstraction of a set of states: 2-relational domains

x2

x1

signs
intervals
zones (DBMs)
octagons ±xi ± xj ≤ c
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Abstract Interpretation (2/2)

I Classicals numerical abstract domains

Abstraction of a set of states: n-relational domains

x2

x1

signs
intervals
zones (DBMs)
octagons
convex polyedra

∑
aixi ≤ ci
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Disequations: Related Works

I’m a plagiarist !
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Disequations: Related Works

I’m a plagiarist !

Consideration in abstract interpretation

classical abstract domains are convex

dynamic partitioning techniques

In other fields
finite unions of convex sets (MC), constraint propagation (CLP),
etc
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Which domain for disequalities ?

Goal
Extend an existing domain without increasing its complexity

Disequalities + equalities
a too poor analysis
I trivial deductions

(x = y ∧ y = z)⇒ x = z

(x = y ∧ x 6= z)⇒ y 6= z

Disequalities + ordering relations
enrich the deduction power
I non completely trivial deductions may be done
(x ≤ y ≤ z ∧ x 6= y)⇒ x 6= z
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Which domain for disequalities ?

DBM is a good candidate
c1 ≤ x ≤ c2

c1 ≤ x − y ≤ c2
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Which domain for disequalities ?

DBM is a good candidate
c1 ≤ x ≤ c2 x 6= 0

c1 ≤ x − y ≤ c2 x 6= y

allow strict inequalities x < y

respect our goal: x − y 6= c impose unbounded representation
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Which domain for disequalities ?

DBM is a good candidate
c1 ≤ x ≤ c2 x 6= 0

c1 ≤ x − y ≤ c2 x 6= y

allow strict inequalities x < y

respect our goal: x − y 6= c impose unbounded representation

Outline

Difference-Bound Matrices

disequalities Difference-Bound Matrices

Application to Program Analysis

Extending Difference-Bound Matrices with Disequality Constraints M. Péron and N. Halbwachs - SYNCHRON’06 - 7/25
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Difference-Bound Matrices (Dill 89)

Var: finite set of variables {v0} ∪ {v1, ..., vn−1}
V: variables domain, Z, Q or R
V: extension of V with +∞

Constraints (c ∈ V)

constraint ::= vi ≤ c | vi − vj ≤ c

Representation

1 ≤ x , y , z ≤ 2

0 x y z0BB@
+∞ −1 −1 −1
2 +∞ +∞ +∞
2 +∞ +∞ +∞
2 +∞ +∞ +∞

1CCA
−1

2

2

−1

2

−1

z

x

y
0
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Introduction DBMs dDBMs Dense Case Arithmetic Case Application to Program Analysis

Emptiness Test, Closure

Satisfiability
I checking for the existence of negative cycles

Closure (for non-empty DBMs)
I infering implicit constraints
shortest-path closure is well defined

e.g. Floyd-Warshall algorithm (O(n3))

1 ≤ x , y , z ≤ 2

0 x y z0BB@
0 −1 −1 −1
2 0 1 1
2 1 0 1
2 1 1 0

1CCA
−1

2

2

−1

2

−1

1

1

1

1

1

1

z

x

y
0
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Domain, Order, Normal Form

The shortest-path closure leads to a normal form

Domain
I D(M) = {(s1, ..., sn−1) ∈ Vn−1 | ∀i , j ∈ [0..n − 1]

sj − si ≤ M≤
ij ∧ s0 = 0}

Order
I M E M ′ ⇐⇒ ∀i , j Mij ≤ M ′

ij

property: M E M ′ ⇒ D(M) ⊆ D(M ′)

Normal form (for non-empty DBMs)
I M = infE {M ′ | D(M ′) = D(M)}

Complexity computing normal form, deciding emptiness, usual
operations: O(n3)
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disequalities Difference-Bound Matrices (VMCAI 07)

Constraints (c ∈ V)

constraint ::= vi ≤ c | vi − vj ≤ c | vi 6= 0 | vi − vj 6= 0

Representation
I dDBM: a pair of matrices (M≤, M 6=)
M≤ is a classical DBM M 6= is a symmetric boolean matrix
I disequal potential graph

8>><>>:
1 ≤ x , y , z ≤ 2
x 6= y
x 6= z
y 6= z

0 x y z0BB@
+∞ −1 −1 −1
2 +∞ +∞ +∞
2 +∞ +∞ +∞
2 +∞ +∞ +∞

1CCA
≤

0BB@
F F F F
F F T T
F T F T
F T T F

1CCA
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Domain, Order, Normal Form

Domain
I D(M) = {(s1, ..., sn−1) ∈ Vn−1 | ∀i , j ∈ [0..n − 1]

sj − si ≤ M≤
ij ∧ M 6=

ij ⇒ sj − si 6= 0 ∧ s0 = 0}

Order
I M E M ′ ⇐⇒ ∀i , j Mij ≤ M ′

ij ∧ M ′ 6=
ij ⇒ M 6=

ij

property preserved: M E M ′ ⇒ D(M) ⊆ D(M ′)

Normal form (for non-empty dDBMs)
I M = infE {M ′ | D(M ′) = D(M)}

Dense Case
↓

O(n3)

Arithmetic Case
emptiness ↙ ↘ normalization

NP-complete O(n5)

Extending Difference-Bound Matrices with Disequality Constraints M. Péron and N. Halbwachs - SYNCHRON’06 - 14/25
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Testing Emptiness

Independence of disequalities

Theorem (Lassez et al. 1992)

Let I be a system of linear inequalities, and D be a finite set of
linear disequalities. Then the conjunction of I and D is feasible if
and only if, for each single disequality d ∈ D, the conjunction of I
and {d} is feasible.

Emptiness test
I check if no variables given disequal by the dDBM are forced
equal by the DBM component
a test runing in O(n2) on the normal form
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Closure (1/5)

DBM component
I independence always hold, apply DBM closure

Constraint deduction rules

(1) vi − vj ≤ c , c < 0 ⇒ vi 6= vj

(2) vi = vj ∧ vj 6= vk ⇒ vi 6= vk

(3) vi ≤ vj ≤ vk ∧ vj 6= vk ⇒ vi 6= vk

I rules (1) and (2) can easily be applied in O(n3)

Closure algorithm

Apply the shortest-path closure on M≤ ;1

Add implicit disequality constraints (rules (1) and (2)) to M 6=2

Extending Difference-Bound Matrices with Disequality Constraints M. Péron and N. Halbwachs - SYNCHRON’06 - 16/25
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Closure (2/5)

Propagation of rule (3)
I done on a restriction/reduction of the disequal potential graph

restriction to zero-weighted arcs

reduction on nodes corresponding to equal variables

Closure algorithm

Apply the shortest-path closure on M≤ ;1

Add implicit disequality constraints (rules (1) and (2)) to M 6= ;2

Consider G the disequal potential graph of M where the set of directed3

edges is restricted to those with null weight ;
Compute SCC, the set of strongly connected components of the directed4

graph of G ;
Consider G• the mixed reduced graph of G constructed on SCC ;5
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Closure (3/5)

Propragation of rule (3)
I propagation of an irreflexive and symmetric relation along an
order relation
let G • = (V •,A•,E •)

(v1, v2) ∈ A•, (v2, v3) ∈ A•

(v1, v2) ∈ E • ∨ (v2, v3) ∈ E •

}
=⇒ (v1, v3) ∈ E •

A kind of transitive closure
I Koubeck’s algorithm is particulary interesting
worst-case complexity: O((n•)2n•r )
average complexity: O((n•)2 log n•)
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Closure (3/5)

Propragation of rule (3)
I propagation of an irreflexive and symmetric relation along an
order relation
let G • = (V •,A•,E •)

1 2 1 23 3

A kind of transitive closure
I Koubeck’s algorithm is particulary interesting
worst-case complexity: O((n•)2n•r )
average complexity: O((n•)2 log n•)
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Closure (4/5)

Adapting Koubeck’s algorithm
I the result of reachable nodes is partitionning into 2 sets

set of nodes reachable by some path traversing an arc doubled
by an edge

set of other reachable nodes

0

1 2 4

3

5

6

v ∈ V • Φ(v) = Φ1(v),Φ2(v)

6 (∅ , {6})
5 (∅ , {5})
4 ,
3 ,
2 ,
1 ,
0 ,
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I the result of reachable nodes is partitionning into 2 sets

set of nodes reachable by some path traversing an arc doubled
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set of other reachable nodes

0

1 2 4

3

5

6

v ∈ V • Φ(v) = Φ1(v),Φ2(v)

6 (∅ , {6})
5 (∅ , {5})
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3 ,
2 ,
1 ,
0 ,
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Adapting Koubeck’s algorithm
I the result of reachable nodes is partitionning into 2 sets

set of nodes reachable by some path traversing an arc doubled
by an edge

set of other reachable nodes

0

1 2 4

3

5

6

v ∈ V • Φ(v) = Φ1(v),Φ2(v)

6 (∅ , {6})
5 (∅ , {5})
4 ({5} , {4})
3 ({5, 6} , {3, 4})
2 ,
1 ,
0 ,
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Closure (4/5)

Adapting Koubeck’s algorithm
I the result of reachable nodes is partitionning into 2 sets

set of nodes reachable by some path traversing an arc doubled
by an edge

set of other reachable nodes

0

1 2 4

3
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6

v ∈ V • Φ(v) = Φ1(v),Φ2(v)

6 (∅ , {6})
5 (∅ , {5})
4 ({5} , {4})
3 ({5, 6} , {3, 4})
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Closure (4/5)

Adapting Koubeck’s algorithm
I the result of reachable nodes is partitionning into 2 sets

set of nodes reachable by some path traversing an arc doubled
by an edge

set of other reachable nodes

0

1 2 4

3

5

6

v ∈ V • Φ(v) = Φ1(v),Φ2(v)

6 (∅ , {6})
5 (∅ , {5})
4 ({5} , {4})
3 ({5, 6} , {3, 4})
2 ({5, 6} , {2, 3, 4})
1 ({2, 3, 4, 5, 6} , {1})
0 ,
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Closure (4/5)

Adapting Koubeck’s algorithm
I the result of reachable nodes is partitionning into 2 sets

set of nodes reachable by some path traversing an arc doubled
by an edge

set of other reachable nodes

0

1 2 4

3

5

6

v ∈ V • Φ(v) = Φ1(v),Φ2(v)

6 (∅ , {6})
5 (∅ , {5})
4 ({5} , {4})
3 ({5, 6} , {3, 4})
2 ({5, 6} , {2, 3, 4})
1 ({2, 3, 4, 5, 6} , {1})
0 ({2, 3, 4, 5, 6} , {0, 1})
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Closure (5/5)

Final stage
I report the new disequalities in initial dDBM

Closure algorithm

Apply the shortest-path closure on M≤ ;1

Add implicit disequality constraints (rules (1) and (2)) to M 6= ;2

Consider G the disequal potential graph of M where the set of directed3

edges is restricted to those with null weight ;
Compute SCC, the set of strongly connected components of the directed4

graph of G ;
Consider G• the mixed reduced graph of G constructed on SCC ;5

Compute O, a topological order on the directed acyclic graph of G• ;6

Apply the disequality propagation algorithm (rule (3)) on G• with respect7

to O ;
Add induced disequality constraints into M 6=8

note: new disequalities are not subject to rule (2)
Complexity O(n3)
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Testing Emptiness

NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in
presence of disequations is NP-complete

brute force technique
consider for each disequality cases x − y ≤ −1 and x − y ≥ 1
I leads to 2d problems of DBM emptiness

Inert disequalities (Seater et al 02)
disequalities wich either eliminates alone all solutions or cannot
participate in the absence of solution
I e.g. variables not bounded are inert
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Closure (1/2)

Narrowing of the bounds
(x − y ≤ 0 ∧ x 6= y)⇒ (x − y ≤ −1)
I an iterative process

y

x z

0
y

x z

y

x z

1
1−1

0
−11 1−1
−1

−2−1

Closure algorithm

repeat
Apply steps 1 and 2 of dense closure;
Narrow ;

until to narrow = ∅ ;

note: rule (3) taken into account by iteration of narrowing and FW
Complexity O(n5) . . . (O(n4)) ?
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Closure (2/2)

−1

2

2

−1

2

−1

1

1

1

1

1

1

z

x

y
0
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Lattice of dDBMs, Analysis Results

Lattice defined
with classical lattice operators + a widenning

Other operators
existential quantification and projection
post-condition of an assignement (x = y ,w 6= 0) x ← x + w
abstraction of conditions

Implementation
I based on the general fixpoint computation developed by
Bertrand Jeannet
only toys examples have been succesfully analyzed
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My expectations

Conclusions
I a new numerical abstract domain dealing with both potential
constraints and disequalities

complexity is O(n3) when variables take values in a dense set

in the arithmetic case, apart the emptiness problems which is
exponential, operations are in O(n5)

Future work

integrate the new domain in an exisiting analyzer to deal with
large examples

implementation in the APRON interface

extend this work to octagons (expressing x 6= −y)

propose a domain expressing disequalities of the form
x − y 6= c
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