An Abstract Domain
 Extending Difference-Bound Matrices with Disequality Constraints

Mathias Péron and Nicolas Halbwachs

SYNCHRON'06 - december 1, 2006

Motivations for disequalities

Conviction

integer variables are used to address objects in many situations

- usefulness of the invariant $x \neq y$
- alias phenomena: $A[x]$ and $A[y]$

■ other client analsis, optimization, independence analysis

Framework static verification, abstract interpretation theory

- allows conservative verification, computing an over-approximation of the fixpoint
- notion of abstract domain

Abstract Interpretation (1/2)

- Theory of Program's Dynamical Behavior Approximation

Problems complex values manipulation, iterative resolution of the fixpoint equation

- abstraction

- conservative verification
- convergence

Abstract interpretation (1/2)

- Theory of Program's Dynamical Behavior Approximation

Problems complex values manipulation, iterative resolution of the fixpoint equation

- abstraction
- conservative verification

- convergence

Abstract Interpretation (1/2)

- Theory of Program's Dynamical Behavior Approximation

Problems complex values manipulation, iterative resolution of the fixpoint equation

- abstraction
- conservative verification
- convergence

Abstract interpretation (2/2)

- Classicals numerical abstract domains

Abstraction of a set of states:

Abstract Interpretation (2/2)

- Classicals numerical abstract domains

Abstraction of a set of states: non-relational domains

Abstract interpretation (2/2)

- Classicals numerical abstract domains

Abstraction of a set of states: non-relational domains

Abstract Interpretation (2/2)

- Classicals numerical abstract domains

Abstraction of a set of states: 2-relational domains

signs
intervals
zones (DBMs) $x_{i}-x_{j} \leq c$

Abstract interpretation (2/2)

- Classicals numerical abstract domains

Abstraction of a set of states: 2-relational domains

signs
intervals
zones (DBMs)
octagons $\pm x_{i} \pm x_{j} \leq c$

Abstract interpretation (2/2)

- Classicals numerical abstract domains

Abstraction of a set of states: n-relational domains

signs
intervals
zones (DBMs)
octagons
convex polyedra $\sum a_{i} x_{i} \leq c_{i}$

Disequations: Related Works

I'm a plagiarist!

Disequations: Related Works

I'm a plagiarist!

Consideration in abstract interpretation

- classical abstract domains are convex
- dynamic partitioning techniques

In other fields
finite unions of convex sets (MC), constraint propagation (CLP), etc

Which domain for disequalities ?

Goal

Extend an existing domain without increasing its complexity
Disequalities + equalities
a too poor analysis

- trivial deductions

■ $(x=y \wedge y=z) \Rightarrow x=z$
■ $(x=y \wedge x \neq z) \Rightarrow y \neq z$
Disequalities + ordering relations
enrich the deduction power

- non completely trivial deductions may be done $(x \leq y \leq z \wedge x \neq y) \Rightarrow x \neq z$

Which domain for disequalities ?

DBM is a good candidate
$c_{1} \leq x \leq c_{2}$
$c_{1} \leq x-y \leq c_{2}$

Which domain for disequalities?

DBM is a good candidate

$$
c_{1} \leq x \leq c_{2} \quad x \neq 0
$$

$c_{1} \leq x-y \leq c_{2} \quad x \neq y$

- allow strict inequalities $x<y$
- respect our goal: $x-y \neq c$ impose unbounded representation

Which domain for disequalities ?

DBM is a good candidate

$$
\begin{array}{cc}
c_{1} \leq x \leq c_{2} & x \neq 0 \\
c_{1} \leq x-y \leq c_{2} & x \neq y
\end{array}
$$

- allow strict inequalities $x<y$
- respect our goal: $x-y \neq c$ impose unbounded representation

Outline

- Difference-Bound Matrices
- disequalities Difference-Bound Matrices
- Application to Program Analysis

Difference-Bound Matrices (Dill 89)

Var. finite set of variables $\left\{v_{0}\right\} \cup\left\{v_{1}, \ldots, v_{n-1}\right\}$
\mathcal{V} : variables domain, \mathbb{Z}, \mathbb{Q} or \mathbb{R}
$\overline{\mathcal{V}}$: extension of \mathcal{V} with $+\infty$

Constraints $(c \in \mathcal{V})$

$$
\text { constraint }::=v_{i} \leq c \mid v_{i}-v_{j} \leq c
$$

Representation

$$
1 \leq x, y, z \leq 2 \quad\left(\begin{array}{cccc}
\mathbf{0} & \mathbf{x} & \mathbf{y} & \mathbf{z} \\
+\infty & -1 & -1 & -1 \\
2 & +\infty & +\infty & +\infty \\
2 & +\infty & +\infty & +\infty \\
2 & +\infty & +\infty & +\infty
\end{array}\right)
$$

Emptiness Test, Closure

Satisfiability

- checking for the existence of negative cycles

Closure (for non-empty DBMs)

- infering implicit constraints
shortest-path closure is well defined
e.g. Floyd-Warshall algorithm $\left(O\left(n^{3}\right)\right)$
$1 \leq x, y, z \leq 2 \quad\left(\begin{array}{cccc}\mathbf{0} & \mathbf{x} & \mathbf{y} & \mathbf{z} \\ 0 & -1 & -1 & -1 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0\end{array}\right)$

Domain, Order, Normal Form

The shortest-path closure leads to a normal form
Domain

- $\mathcal{D}(M)=\left\{\left(s_{1}, \ldots, s_{n-1}\right) \in \mathcal{V}^{n-1} \mid \forall i, j \in[0 . . n-1]\right.$

$$
\left.s_{j}-s_{i} \leq M_{i j}^{\leq} \wedge s_{0}=0\right\}
$$

Order

- $M \unlhd M^{\prime} \Longleftrightarrow \forall i, j M_{i j} \leq M_{i j}^{\prime}$
property: $M \unlhd M^{\prime} \Rightarrow \mathcal{D}(M) \subseteq \mathcal{D}\left(M^{\prime}\right)$
Normal form (for non-empty DBMs)
- $\bar{M}=\inf _{\unlhd\left\{M^{\prime} \mid \mathcal{D}\left(M^{\prime}\right)=\mathcal{D}(M)\right\}, ~}^{\text {(}}$

Complexity computing normal form, deciding emptiness, usual operations: $O\left(n^{3}\right)$

disequalities Difference-Bound Matrices (VMCAl 07)

Constraints $(c \in \mathcal{V})$

$$
\text { constraint }::=v_{i} \leq c\left|v_{i}-v_{j} \leq c\right| v_{i} \neq 0 \mid v_{i}-v_{j} \neq 0
$$

Representation
$\checkmark d$ DBM: a pair of matrices $\left(M \leq, M^{\neq}\right)$
$M \leq$ is a classical DBM
M^{\neq}is a symmetric boolean matrix

- disequal potential graph

Domain, Order, Normal Form

Domain

- $\mathcal{D}(M)=\left\{\left(s_{1}, \ldots, s_{n-1}\right) \in \mathcal{V}^{n-1} \mid \forall i, j \in[0 . . n-1]\right.$

$$
\left.s_{j}-s_{i} \leq M_{i j}^{\leq} \wedge M_{i j}^{\neq} \Rightarrow s_{j}-s_{i} \neq 0 \wedge s_{0}=0\right\}
$$

Order

- $M \unlhd M^{\prime} \Longleftrightarrow \forall i, j M_{i j} \leq M_{i j}^{\prime} \wedge M_{i j}^{\prime \neq} \Rightarrow M_{i j}^{\neq}$ property preserved: $M \unlhd M^{\prime} \Rightarrow \mathcal{D}(M) \subseteq \mathcal{D}\left(M^{\prime}\right)$

Normal form (for non-empty dDBMs)

- $\bar{M}=\inf _{\unlhd\left\{M^{\prime} \mid \mathcal{D}\left(M^{\prime}\right)=\mathcal{D}(M)\right\}, ~}^{\text {(}}$

Dense Case

Arithmetic Case emptiness
NP-complete
\searrow normalization $O\left(n^{5}\right)$

Testing Emptiness

Independence of disequalities

Theorem (Lassez et al. 1992)

Let I be a system of linear inequalities, and D be a finite set of linear disequalities. Then the conjunction of I and D is feasible if and only if, for each single disequality $d \in D$, the conjunction of I and $\{d\}$ is feasible.

Emptiness test

- check if no variables given disequal by the d DBM are forced equal by the DBM component a test runing in $O\left(n^{2}\right)$ on the normal form

Closure (1/5)

DBM component

- independence always hold, apply DBM closure

Constraint deduction rules
■(1) $v_{i}-v_{j} \leq c, c<0 \Rightarrow v_{i} \neq v_{j}$
■ (2) $v_{i}=v_{j} \wedge v_{j} \neq v_{k} \Rightarrow v_{i} \neq v_{k}$
■ (3) $v_{i} \leq v_{j} \leq v_{k} \wedge v_{j} \neq v_{k} \Rightarrow v_{i} \neq v_{k}$

- rules (1) and (2) can easily be applied in $O\left(n^{3}\right)$

Closure algorithm
1 Apply the shortest-path closure on M^{\leq};
2 Add implicit disequality constraints (rules (1) and (2)) to M^{\neq}

Propagation of rule (3)

- done on a restriction/reduction of the disequal potential graph
- restriction to zero-weighted arcs
- reduction on nodes corresponding to equal variables

Closure algorithm
1 Apply the shortest-path closure on $M \leq$;
2 Add implicit disequality constraints (rules (1) and (2)) to M^{\neq};
3 Consider G the disequal potential graph of M where the set of directed edges is restricted to those with null weight ;
4 Compute $\mathcal{S C C}$, the set of strongly connected components of the directed graph of G;
5 Consider G^{\bullet} the mixed reduced graph of G constructed on $\mathcal{S C C}$;

Closure (3/5)

Propragation of rule (3)

- propagation of an irreflexive and symmetric relation along an order relation let $G^{\bullet}=\left(V^{\bullet}, A^{\bullet}, E^{\bullet}\right)$

$$
\left.\begin{array}{c}
\left(v_{1}, v_{2}\right) \in A^{\bullet},\left(v_{2}, v_{3}\right) \in A^{\bullet} \\
\left(v_{1}, v_{2}\right) \in E^{\bullet} \vee\left(v_{2}, v_{3}\right) \in E^{\bullet}
\end{array}\right\} \Longrightarrow\left(v_{1}, v_{3}\right) \in E^{\bullet}
$$

A kind of transitive closure

- Koubeck's algorithm is particulary interesting worst-case complexity: $O\left(\left(n^{\bullet}\right)^{2} n_{r}^{\bullet}\right)$ average complexity: $O\left(\left(n^{\bullet}\right)^{2} \log n^{\bullet}\right)$

Closure (3/5)

Propragation of rule (3)

- propagation of an irreflexive and symmetric relation along an order relation let $G^{\bullet}=\left(V^{\bullet}, A^{\bullet}, E^{\bullet}\right)$

A kind of transitive closure

- Koubeck's algorithm is particulary interesting worst-case complexity: $O\left(\left(n^{\bullet}\right)^{2} n_{r}^{\bullet}\right)$ average complexity: $O\left(\left(n^{\bullet}\right)^{2} \log n^{\bullet}\right)$

Closure (4/5)

Adapting Koubeck's algorithm

- the result of reachable nodes is partitionning into 2 sets
- set of nodes reachable by some path traversing an arc doubled by an edge
- set of other reachable nodes

Closure (4/5)

Adapting Koubeck's algorithm

- the result of reachable nodes is partitionning into 2 sets
- set of nodes reachable by some path traversing an arc doubled by an edge
- set of other reachable nodes

Closure (4/5)

Adapting Koubeck's algorithm

- the result of reachable nodes is partitionning into 2 sets
- set of nodes reachable by some path traversing an arc doubled by an edge
- set of other reachable nodes

Closure (4/5)

Adapting Koubeck's algorithm

- the result of reachable nodes is partitionning into 2 sets
- set of nodes reachable by some path traversing an arc doubled by an edge
- set of other reachable nodes

Closure (4/5)

Adapting Koubeck's algorithm

- the result of reachable nodes is partitionning into 2 sets
- set of nodes reachable by some path traversing an arc doubled by an edge
- set of other reachable nodes

Adapting Koubeck's algorithm

- the result of reachable nodes is partitionning into 2 sets
- set of nodes reachable by some path traversing an arc doubled by an edge
- set of other reachable nodes

Final stage

- report the new disequalities in initial dDBM

Closure algorithm

1 Apply the shortest-path closure on $M \leq$;
2 Add implicit disequality constraints (rules (1) and (2)) to M^{\neq};
3 Consider G the disequal potential graph of M where the set of directed edges is restricted to those with null weight ;
4 Compute $\mathcal{S C C}$, the set of strongly connected components of the directed graph of G;
5 Consider G^{\bullet} the mixed reduced graph of G constructed on $\mathcal{S C C}$;
6 Compute \mathcal{O}, a topological order on the directed acyclic graph of G^{\bullet};
7 Apply the disequality propagation algorithm (rule (3)) on G^{\bullet} with respect to \mathcal{O};
8 Add induced disequality constraints into M^{\neq}
note: new disequalities are not subject to rule (2)
Complexity $O\left(n^{3}\right)$

Testing Emptiness

NP-completeness

Theorem (Hunt 1980)
The satisfiability problem of a set of potential constraints in presence of disequations is NP-complete
brute force technique
consider for each disequality cases $x-y \leq-1$ and $x-y \geq 1$

- leads to 2^{d} problems of DBM emptiness

Inert disequalities (Seater et al 02) disequalities wich either eliminates alone all solutions or cannot participate in the absence of solution

- e.g. variables not bounded are inert

Closure (1/2)

Narrowing of the bounds
$(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)$

- an iterative process

Closure algorithm

repeat

Apply steps 1 and 2 of dense closure; Narrow ;
until to_narrow $=\emptyset$;
note: rule (3) taken into account by iteration of narrowing and FW Complexity $O\left(n^{5}\right) \ldots\left(O\left(n^{4}\right)\right)$?

Closure (2/2)

Lattice of dDBMs, Analysis Results

Lattice defined
with classical lattice operators + a widenning
Other operators
existential quantification and projection post-condition of an assignement $(x=y, w \neq 0) x \leftarrow x+w$ abstraction of conditions

Implementation

- based on the general fixpoint computation developed by

Bertrand Jeannet only toys examples have been succesfully analyzed

My expectations

Conclusions

- a new numerical abstract domain dealing with both potential constraints and disequalities
- complexity is $O\left(n^{3}\right)$ when variables take values in a dense set
- in the arithmetic case, apart the emptiness problems which is exponential, operations are in $O\left(n^{5}\right)$

Future work

- integrate the new domain in an exisiting analyzer to deal with large examples
- implementation in the APRON interface
- extend this work to octagons (expressing $x \neq-y$)
- propose a domain expressing disequalities of the form $x-y \neq c$

