An Abstract Domain
 Extending Difference-Bound Matrices with Disequality Constraints

Mathias Péron and Nicolas Halbwachs

Grenoble - France

Motivations

Our belief
integer variables are used to address objects in many situations

- array indexes
- memory addresses and pointers (C style)
- addressing of devices (in SoCs)
- usefulness of the invariant $x \neq y$
- for alias phenomena: $\mathrm{A}[x]$ and $\mathrm{A}[y]$

■ for other analyses: e.g. independence analysis

Framework abstract interpretation theory
Goal a new abstract domain handling disequalities

Abstract Interpretation

Abstraction of a set of states:

- by classical (convex) numerical abstract domains

Abstract Interpretation

Abstraction of a set of states:

- by classical (convex) numerical abstract domains
non-relational domains

$$
\text { signs } 0 \leq x_{i}
$$

Abstract Interpretation

Abstraction of a set of states:

- by classical (convex) numerical abstract domains
non-relational domains

signs
intervals $c_{1} \leq x_{i} \leq c_{2}$

Abstract Interpretation

Abstraction of a set of states:

- by classical (convex) numerical abstract domains

2-relational domains

Abstract Interpretation

Abstraction of a set of states:

- by classical (convex) numerical abstract domains

2-relational domains

Abstract Interpretation

Abstraction of a set of states:

- by classical (convex) numerical abstract domains
n-relational domains

signs
intervals
zones (DBMs)
octagons
convex polyedra $\sum \alpha_{i} x_{i} \leq c$

Abstract Interpretation

Abstraction of a set of states:

- by classical (convex) numerical abstract domains

signs
intervals
zones (DBMs)
octagons
convex polyedra
with disequality invariants $x_{i} \neq x_{j}$

Which Domain for Disequalities ? (1/2)

Disequalities + equalities a too poor analysis

- trivial deductions

■ $(x=y \wedge y=z) \Rightarrow x=z$
■ $(x=y \wedge x \neq z) \Rightarrow y \neq z$
Disequalities + ordering relations a fruitful combination

- deduction power enriched
$\square(x \leq y+c \wedge c<0) \Rightarrow x \neq y$
■ $(x \leq y \leq z \wedge x \neq y) \Rightarrow x \neq z$
Goal
To extend an existing domain without increasing its complexity

Which Domain for Disequalities ? (2/2)

DBM is a good candidate

- simple

$$
\begin{aligned}
c_{1} & \leq x \leq c_{2} \\
x-y & \leq c
\end{aligned}
$$

- and cheap
emptiness testing, normal form computing, usual operations $\rightarrow O\left(n^{3}\right)$

Which Domain for Disequalities ? (2/2)

DBM is a good candidate

- simple

$$
\begin{gathered}
c_{1} \leq x \leq c_{2} \quad+\quad x \neq 0 \\
x-y \leq c \quad+\quad x \neq y
\end{gathered}
$$

- and cheap
emptiness testing, normal form computing, usual operations $\rightarrow O\left(n^{3}\right)$

Other disequalities Why not $x-y \neq c$?

```
x := 0; y := 2
while ( y < 100 and ? ) {
        y := y + 2
    }
```

- impose an unbounded representation for the constraint set do not respect our goal (complexity)

Which Domain for Disequalities ? (2/2)

DBM is a good candidate

- simple

$$
\begin{gathered}
c_{1} \leq x \leq c_{2} \quad+\quad x \neq 0 \\
x-y \leq c \quad+\quad x \neq y
\end{gathered}
$$

- and cheap
emptiness testing, normal form computing, usual operations $\rightarrow O\left(n^{3}\right)$

Other disequalities Why not $x-y \neq c$?

$$
\begin{aligned}
& \mathrm{x}:=0 ; \mathrm{y}:=2 \quad y-x \neq 1 \\
& \text { while }(\mathrm{y}<100 \text { and ? }) \quad\{ \\
& \mathrm{y}:=\mathrm{y}+2 \\
& \} \quad y-x \neq 1, y-x \neq 3, \ldots, y-x \neq 99
\end{aligned}
$$

- impose an unbounded representation for the constraint set do not respect our goal (complexity)

Outline

- Introduction
- Difference-Bound Matrices
a short reminder
- disequalities Difference-Bound Matrices definition of the domain
- Application to Program Analysis
- Conclusion

Difference-Bound Matrices (Dill 89)

Var: a finite set of variables $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
\mathcal{V} : the variables domain, \mathbb{Z}, \mathbb{Q} or \mathbb{R}
$\overline{\mathcal{V}}$: the extension of \mathcal{V} with $+\infty$
Potential constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c
$$

Representations

$$
\left\{\begin{array}{l}
3 \leq x_{1} \leq 5 \\
-4 \leq x_{2} \leq 2 \\
x_{1}-x_{2} \leq 14
\end{array}\right.
$$

\mathbf{x}_{0}
\mathbf{x}_{1}
$\mathbf{x}_{2}$$\left(\begin{array}{ccc}\mathbf{x}_{0} & \mathbf{x}_{1} & \mathbf{x}_{2} \\ 0 & -3 & 4 \\ 5 & 0 & 14 \\ 2 & +\infty & 0\end{array}\right)$
set of constraints

- DBM

Difference-Bound Matrices (Dill 89)

Var: a finite set of variables $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
\mathcal{V} : the variables domain, \mathbb{Z}, \mathbb{Q} or \mathbb{R}
$\overline{\mathcal{V}}$: the extension of \mathcal{V} with $+\infty$
Potential constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c\left|x_{i} \leq c\right|-x_{i} \leq c
$$

Representations

$$
\left\{\begin{array}{l}
3 \leq x_{1} \leq 5 \\
-4 \leq x_{2} \leq 2 \\
x_{1}-x_{2} \leq 14
\end{array}\right.
$$

\mathbf{x}_{0}
\mathbf{x}_{1}
$\mathbf{x}_{2}$$\left(\begin{array}{ccc}\mathbf{x}_{0} & \mathbf{x}_{1} & \mathbf{x}_{2} \\ 0 & -3 & 4 \\ 5 & 0 & 14 \\ 2 & +\infty & 0\end{array}\right)$
set of constraints

- DBM

Difference-Bound Matrices (Dill 89)

Var: a finite set of variables $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
\mathcal{V} : the variables domain, \mathbb{Z}, \mathbb{Q} or \mathbb{R}
$\overline{\mathcal{V}}$: the extension of \mathcal{V} with $+\infty$
Potential constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c\left|x_{i}-x_{0} \leq c\right| x_{0}-x_{i} \leq c \quad \text { with } x_{0}=0
$$

Representations

$$
\left\{\begin{array}{l}
3 \leq x_{1} \leq 5 \\
-4 \leq x_{2} \leq 2 \\
x_{1}-x_{2} \leq 14
\end{array}\right.
$$

\mathbf{x}_{0}
\mathbf{x}_{1}
$\mathbf{x}_{2}$$\left(\begin{array}{ccc}\mathbf{x}_{0} & \mathbf{x}_{1} & \mathbf{x}_{2} \\ 0 & -3 & 4 \\ 5 & 0 & 14 \\ 2 & +\infty & 0\end{array}\right)$

set of constraints

- DBM

■ potential graph

Difference-Bound Matrices (Dill 89)

Var: a finite set of variables $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
\mathcal{V} : the variables domain, \mathbb{Z}, \mathbb{Q} or \mathbb{R}
$\overline{\mathcal{V}}$: the extension of \mathcal{V} with $+\infty$
Potential constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c\left|x_{i} \leq c\right|-x_{i} \leq c
$$

Representations

$$
\left\{\begin{array}{l}
3 \leq x_{1} \leq 5 \\
-4 \leq x_{2} \leq 2 \\
x_{1}-x_{2} \leq 14
\end{array}\right.
$$

\mathbf{x}_{0}
\mathbf{x}_{1}
$\mathbf{x}_{2}$$\left(\begin{array}{ccc}\mathbf{x}_{0} & \mathbf{x}_{1} & \mathbf{x}_{2} \\ 0 & -3 & 4 \\ 5 & 0 & 14 \\ 2 & +\infty & 0\end{array}\right)$
set of constraints

- DBM

Testing Emptiness, Closure

Emptiness Test

- checking for the existence of negative cycles

Closure (for non-empty DBMs)

- infering implicit constraints shortest-path closure is well defined the closure leads to a normal form

$$
\left\{\begin{array}{ll}
3 \leq x_{1} \leq 5 \\
-4 \leq x_{2} \leq 2 \\
x_{1}-x_{2} \leq 14
\end{array} \quad \begin{array}{l}
\mathbf{x}_{0} \\
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\left(\begin{array}{ccc}
\mathbf{x}_{0} & \mathbf{x}_{1} & \mathbf{x}_{2} \\
0 & -3 & 4 \\
5 & 0 & 9 \\
2 & -1 & 0
\end{array}\right)\right.
$$

set of constraints

- closed DBM
- potential graph

Outline

- Introduction
- Difference-Bound Matrices
a short reminder
- disequalities Difference-Bound Matrices definition of the domain
- Application to Program Analysis
- Conclusion

disequalities Difference-Bound Matrices

Constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c \mid \pm x_{i} \leq c
$$

Representations
\checkmark a $d \mathrm{DBM}$ is a pair of matrices $\left(M \leq, M^{\neq}\right)$
$M \leq$ is a classical DBM
M^{\neq}is a symmetric boolean matrix

disequalities Difference-Bound Matrices

Constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c\left| \pm x_{i} \leq c\right| x_{i}-x_{j} \neq 0
$$

Representations
\checkmark a $d \mathrm{DBM}$ is a pair of matrices $\left(M \leq, M^{\neq}\right)$
$M \leq$ is a classical DBM
M^{\neq}is a symmetric boolean matrix

disequalities Difference-Bound Matrices

Constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c\left| \pm x_{i} \leq c\right| x_{i}-x_{j} \neq 0 \mid x_{i} \neq 0
$$

Representations
\checkmark a $d \mathrm{DBM}$ is a pair of matrices $\left(M \leq, M^{\neq}\right)$
$M \leq$ is a classical DBM
M^{\neq}is a symmetric boolean matrix

disequalities Difference-Bound Matrices

Constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c\left| \pm x_{i} \leq c\right| x_{i}-x_{j} \neq 0 \mid x_{i}-x_{0} \neq 0 \quad \text { with } x_{0}=0
$$

Representations
\checkmark a $d \mathrm{DBM}$ is a pair of matrices $\left(M \leq, M^{\neq}\right)$
$M \leq$ is a classical DBM
M^{\neq}is a symmetric boolean matrix

disequalities Difference-Bound Matrices

Constraints $(c \in \mathcal{V})$

$$
x_{i}-x_{j} \leq c\left| \pm x_{i} \leq c\right| x_{i}-x_{j} \neq 0 \mid x_{i} \neq 0
$$

Representations
\checkmark a $d \mathrm{DBM}$ is a pair of matrices $\left(M \leq, M^{\neq}\right)$
$M \leq$ is a classical DBM
M^{\neq}is a symmetric boolean matrix

Domain, Order and Normal Form

Domain noted $\mathcal{D}(M)$

- all the possible valuations of the variables represented by the dDBM M

Order

- $M \unlhd M^{\prime} \Longleftrightarrow \forall i, j M_{i j} \leq M_{i j}^{\prime} \wedge M_{i j}^{\prime \neq} \Rightarrow M_{i j}^{\neq}$
"smaller" has tightest bounds and more disequalities
- property : $M \unlhd M^{\prime} \Rightarrow \mathcal{D}(M) \subseteq \mathcal{D}\left(M^{\prime}\right)$

Normal form (for non-empty dDBMs)

- $\bar{M}=\inf _{\unlhd}\left\{M^{\prime} \mid \mathcal{D}\left(M^{\prime}\right)=\mathcal{D}(M)\right\}$

Outline

- Introduction
- Difference-Bound Matrices
a short reminder
- disequalities Difference-Bound Matrices definition of the domain
- Dense Case where $\mathcal{V}=\mathbb{Q}, \mathbb{R}$. Testing emptiness, closure
- Arithmetic Case
where $\mathcal{V}=\mathbb{Z}$. Testing emptiness, closure
- Application to Program Analysis
- Conclusion

Dense Case] Testing Emptiness

Independence of disequalities

Theorem (Lassez et al. 1992)

Let I be a system of linear inequalities, and D be a finite set of linear disequalities. Then the conjunction of I and D is feasible if and only if, for each single disequality $d \in D$, the conjunction of I and $\{d\}$ is feasible.

Emptiness test

- check there is no pair of variables given equal and disequal $\rightarrow O\left(n^{2}\right)$ on the closed $d \mathrm{DBM}$

Dense Case] Testing Emptiness

Independence of disequalities

Theorem (Lassez et al. 1992)

Let I be a system of linear inequalities, and D be a finite set of linear disequalities. Then the conjunction of I and D is feasible if and only if, for each single disequality $d \in D$, the conjunction
 of I and $\{d\}$ is feasible.

Emptiness test

- check there is no pair of variables given equal and disequal $\rightarrow O\left(n^{2}\right)$ on the closed $d \mathrm{DBM}$

Dense Case] Testing Emptiness

Independence of disequalities

Theorem (Lassez et al. 1992)

Let I be a system of linear inequalities, and D be a finite set of linear disequalities. Then the conjunction of I and D is feasible if and only if, for each single disequality $d \in D$, the conjunction of I and $\{d\}$ is feasible.

Emptiness test

- check there is no pair of variables given equal and disequal $\rightarrow O\left(n^{2}\right)$ on the closed $d \mathrm{DBM}$

Dense Case] Closure (1/2)

Inequalities

- independence always hold: apply DBM closure

Disequalities

- deduction rules
- (1) $(x \leq y+c \wedge c<0) \Rightarrow x \neq y$

■ (2) $(x=y \wedge x \neq z) \Rightarrow y \neq z$

- (3) $(x \leq y \leq z \wedge x \neq y) \Rightarrow x \neq z$

Closure algorithm (first stage)

- close M^{\leq}
- apply rules (1) and (2)
$\rightarrow O\left(n^{3}\right)$

Dense Case] Closure (2/2)

Rule (3)
a "disequal potential graph view" of the rule:

$$
x_{7} \xlongequal{\square}\left(x_{4} \xrightarrow{0} x_{2}\right.
$$

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Dense Case] Closure (2/2)

Rule (3)
a kind of transitive closure $\rightarrow O\left(n^{3}\right)$
Closure algorithm (second stage)

Outline

- Introduction
- Difference-Bound Matrices
a short reminder
- disequalities Difference-Bound Matrices definition of the domain
- Dense Case where $\mathcal{V}=\mathbb{Q}, \mathbb{R}$. Testing emptiness, closure
- Arithmetic Case
where $\mathcal{V}=\mathbb{Z}$. Testing emptiness, closure
- Application to Program Analysis
- Conclusion

Arithmetic Case] Testing Emptiness

NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in presence of disequations is NP-complete

$$
\left\{\begin{array}{l}
1 \leq x_{1}, x_{2}, x_{3} \leq 2 \\
x_{1} \neq x_{2} \\
x_{1} \neq x_{3} \\
x_{2} \neq x_{3}
\end{array}\right.
$$

Emptiness test

- brute force: consider for each disequality cases $x-y \leq-1$ and $x-y \geq 1$
- leads to 2^{d} emptiness tests on DBMs

■ dense approximation is safe!

- in the middle: heuristics

Arithmetic Case] Testing Emptiness

NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in presence of disequations is NP-complete

Emptiness test

- brute force: consider for each disequality cases $x-y \leq-1$ and $x-y \geq 1$
- leads to 2^{d} emptiness tests on DBMs

■ dense approximation is safe !

- in the middle: heuristics

Arithmetic Case] Testing Emptiness

NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in presence of disequations is NP-complete

Emptiness test

- brute force: consider for each disequality cases $x-y \leq-1$ and $x-y \geq 1$
- leads to 2^{d} emptiness tests on DBMs

■ dense approximation is safe!

- in the middle: heuristics

Arithmetic Case] Testing Emptiness

NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in presence of disequations is NP-complete

Emptiness test

- brute force: consider for each disequality cases $x-y \leq-1$ and $x-y \geq 1$
- leads to 2^{d} emptiness tests on DBMs

■ dense approximation is safe !
■ in the middle: heuristics

Arithmetic Case] Testing Emptiness

NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in presence of disequations is NP-complete

Emptiness test

- brute force: consider for each disequality cases $x-y \leq-1$ and $x-y \geq 1$
- leads to 2^{d} emptiness tests on DBMs

■ dense approximation is safe !

- in the middle: heuristics

Arithmetic Case] Testing Emptiness

NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in presence of disequations is NP-complete

Emptiness test

- brute force: consider for each disequality cases $x-y \leq-1$ and $x-y \geq 1$
- leads to 2^{d} emptiness tests on DBMs

■ dense approximation is safe !
■ in the middle: heuristics

Arithmetic Case] Closure

Narrowing of the bounds
$(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)$

- an iterative process

iterations of
- shortest-path closure + rules (1)(2) narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds

$$
(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)
$$

- an iterative process

iterations of shortest-path closure + rules (1)(2)
- narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds

$$
(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)
$$

- an iterative process

iterations of shortest-path closure + rules (1)(2)
- narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds

$$
(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)
$$

- an iterative process

iterations of
- shortest-path closure + rules (1)(2) narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds
$(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)$

- an iterative process

iterations of
- shortest-path closure + rules (1)(2) narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds
$(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)$

- an iterative process

iterations of
shortest-path closure + rules (1)(2)
- narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds
$(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)$

- an iterative process

iterations of
shortest-path closure + rules (1)(2)
- narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds
$(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)$

- an iterative process

iterations of
- shortest-path closure + rules (1)(2)
narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Arithmetic Case] Closure

Narrowing of the bounds
$(x-y \leq 0 \wedge x \neq y) \Rightarrow(x-y \leq-1)$

- an iterative process

iterations of
- shortest-path closure + rules (1)(2)
narrowing

Closure algorithm

- iterations include the application of rule (3)
$\rightarrow O\left(n^{5}\right)$

Outline

- Introduction
- Difference-Bound Matrices
a short reminder
- disequalities Difference-Bound Matrices definition of the domain
- Dense Case
where $\mathcal{V}=\mathbb{Q}, \mathbb{R}$. Testing emptiness, closure
- Arithmetic Case where $\mathcal{V}=\mathbb{Z}$. Testing emptiness, closure
- Application to Program Analysis
- Conclusion

Lattice of dDBMs, Operators

Lattice
with classical lattice operators + a widening
$\triangleright \sqcup=(\max , \vee), \sqcap=(\min , \wedge)$
Other operators
existential quantification and projection post-condition of an assignment abstraction of conditions

$$
\mathrm{x}:=\mathrm{x}+\mathrm{w}
$$

Implementation

- a prototype has been implemented and simple ad hoc examples analysed.

Lattice of dDBMs, Operators

Lattice
with classical lattice operators + a widening
$\downarrow \sqcup=(\max , \vee), \sqcap=(\min , \wedge)$
Other operators
existential quantification and projection
post-condition of an assignment abstraction of conditions
$\mathrm{x}=\mathrm{y}, \mathrm{w} \neq 0$
$\mathrm{x}:=\mathrm{x}+\mathrm{w}$
$\mathrm{x} \neq \mathrm{y}$
Implementation

- a prototype has been implemented and simple ad hoc examples analysed.

Conclusion

Achievements

- a new numerical abstract domain dealing with both potential constraints and disequalities
- complexity is $O\left(n^{3}\right)$ when variables take values in a dense set
- in the arithmetic case, apart from the emptiness problem which is exponential (may be aprroximate), operations are in $O\left(n^{5}\right)$

Ongoing work

- implementation of d DBMs in the APRON interface

■ extend the work to octagons (expressing $x \neq-y$)

- propose a domain expressing disequalities of the form $x-y \neq c$

